
WoltLab Community Framework
Technical Documentation

WoltLab GmbH

http://www.woltlab.com

http://www.woltlab.com

Contents

I. The WoltLab Community Framework 8

1. Introduction 9
1.1. About the WoltLab Community Framework 9
1.2. Terminology . 9
1.3. License . 10

2. Installation 11
2.1. System requirements . 11
2.2. Download . 11
2.3. Performing the installation . 11

3. The package system 13
3.1. The fundamentals . 13
3.2. Included basic packages . 13

4. Quick start 18
4.1. The class WCF . 18

4.1.1. Database access . 18
4.1.2. Template system . 19
4.1.3. Signed-in user . 19
4.1.4. Session . 19
4.1.5. Language system . 20
4.1.6. Cache . 20
4.1.7. Request . 20

4.2. The class DatabaseObject . 20

5. Database interface 21
5.1. Methods of the Database class . 21

6. The template system 25
6.1. Basic syntax for template designers . 25

6.1.1. Variables . 25
6.1.2. Commentaries . 26
6.1.3. Functions . 26

3

Contents

6.1.4. Modifiers . 27
6.2. The template system for programmers 27

6.2.1. assign . 27
6.2.2. append . 28
6.2.3. assignByRef . 28
6.2.4. clearAssign . 28
6.2.5. clearAllAssign . 28
6.2.6. display . 29
6.2.7. fetch . 29
6.2.8. registerPrefilter . 29

6.3. Fixed integrated functions . 30
6.3.1. if,else,elseif - Case differentiation 30
6.3.2. include . 31
6.3.3. foreach . 31
6.3.4. section . 32
6.3.5. capture . 33

6.4. Additional provided functions . 34
6.4.1. append . 34
6.4.2. assign . 34
6.4.3. counter . 34
6.4.4. cycle . 35
6.4.5. fetch . 35
6.4.6. htmloptions . 36
6.4.7. htmlcheckboxes . 37
6.4.8. implode . 37
6.4.9. lang . 39
6.4.10. pages . 39

6.5. Included modifiers . 40
6.5.1. concat . 40
6.5.2. date . 40
6.5.3. encodejs . 40
6.5.4. filesize . 41
6.5.5. fulldate . 41
6.5.6. shorttime . 41
6.5.7. time . 41
6.5.8. truncate . 41

6.6. Expanding the template system . 42
6.6.1. Custom modifiers . 42
6.6.2. Custom functions . 42
6.6.3. Custom block functions . 43
6.6.4. Custom prefilters . 43
6.6.5. Custom Compiler functions 44

7. Language administration 48

4

Contents

7.1. Fundamentals . 48
7.2. Use of language variables . 48
7.3. Construction of language files . 49
7.4. Embedding language files . 50

8. Events 52
8.1. Triggering events . 52
8.2. Using events . 52

9. Sessions 53
9.1. SessionFactory . 53
9.2. Session . 53

10. Caching 55

11. RequestHandler & the page-, form- and action-classes 57
11.1. RequestHandler . 57
11.2. Page and AbstractPage . 58
11.3. Form and AbstractForm . 58
11.4. Action and AbstractAction . 59

II. Create packages 60

12. WCF-packages 61
12.1. The format . 61
12.2. The package.xml file . 61

12.2.1. The package identifier . 62
12.2.2. Multilingual package names and package descriptions 62
12.2.3. <requiredpackage>-Tag . 62
12.2.4. <optionalpackage>-Tag . 64
12.2.5. Instructions for installation and updates 64

12.3. Different package types . 65

13. Package Installation Plugin 66
13.1. File-based PIPs . 66

13.1.1. The Files-PIP . 66
13.1.2. The Templates-PIP . 67
13.1.3. ACPTemplates-PIP . 68
13.1.4. The Style-PIP . 68
13.1.5. The PIPs-PIP . 69

13.2. Import PIPs (XML) . 69
13.2.1. The EventListener-PIP . 70
13.2.2. The Cronjobs-PIP . 71
13.2.3. The Options-PIP . 73

5

Contents

13.2.4. The UserOptions-PIP . 74
13.2.5. The GroupOptions-PIP . 76
13.2.6. The FeedReaderSource-PIP 77
13.2.7. The Help-PIP . 78
13.2.8. The BBCodes-PIP . 79
13.2.9. The Smilies-PIP . 80
13.2.10. The SearchableMessageType-PIP 81
13.2.11. The PageLocation-PIP . 82
13.2.12. The HeaderMenu-PIP . 83
13.2.13. The UserCPMenu-PIP . 84
13.2.14. The ACPMenu-PIP . 85
13.2.15. The StyleAttributes-PIP . 86
13.2.16. The Languages-PIP . 86

13.3. Other PIPs . 88
13.3.1. The SQL-PIP . 88
13.3.2. The Script-PIP . 89
13.3.3. Das TemplatePatch-PIP . 90
13.3.4. The ACPTemplatePatch-PIP 91

13.4. Custom PIPs . 91
13.4.1. The Interface . 92
13.4.2. Abstract classes . 93
13.4.3. Installation of the PIP . 94

14. Standalone applications 95
14.1. Creating a package . 95
14.2. Inheritance of the classes WCF and WCFACP 95
14.3. Creating an IndexPage-class . 96
14.4. Creating an index.php-file . 96

III.Appendices 98

15. Events 99
15.1. Events of the free WCF-packages . 99

16. Style variables 101
16.1. Global . 101

16.1.1. General . 101
16.1.2. Page . 102
16.1.3. Boxes . 103
16.1.4. Borders . 104
16.1.5. Forms . 105

16.2. Text . 106
16.2.1. Text types . 106

6

Contents

16.2.2. Links . 106
16.3. Buttons . 107

16.3.1. Small Buttons . 107
16.3.2. Large Buttons . 108

16.4. Menus . 109
16.4.1. Main Menu . 109
16.4.2. Tabs . 110
16.4.3. Tab-Buttons . 110
16.4.4. Table heads . 111
16.4.5. Extras . 112

16.5. Advanced . 113
16.5.1. Message display . 113
16.5.2. Additional CSS-declarations 113
16.5.3. Comments . 114

16.6. Value margins . 114

7

Part I.

The WoltLab Community
Framework

8

1. Introduction

1.1. About the WoltLab Community Framework

The foundation of the WoltLab Burning Board 3 (WBB) is created by the WoltLab
Community Framework (WCF). It will be the basis for all future WoltLab products in
the sphere of Community development. It is completely object–oriented, programmed
in PHP 5 and provides support for module–style packages. Burning Board 3 is the first
application to use this system. The new forum software consists of multiple smaller
packages, which can be shared with other applications.

The Community Framework also provides functions for the automatic update of installed
packages. For this, the manufacturer’s (e.g. WoltLab’s) package database is checked for
updated versions of these packages. If required, the updates are automatically down-
loaded and executed. It is also possible to manually search the package database, in
order to install add-ons or completely new applications. A selected package and all
other packages required additionally will be automatically downloaded and installed.
Unless it is being used by another package, an installed package can be removed with a
single mouse click.

1.2. Terminology

In this documentation, the following terms will be used:

Package a module for the WCF

Style the visual appearance of the standalone application (comparable with “skin” or
“theme”). A style consists of value definitions of colors, fonts and sizes (CSS) as
well as the matching templates.

Template XHTML–pattern with placeholders (a.k.a. template variables).

9

1. Introduction

1.3. License

The WoltLab Community Framework as such is covered by the “GNU Lesser General
Public License” (LGPL). The complete license terms can be found at the following
address:

http://www.gnu.org/licenses/lgpl.html

Put simply, you can use all WCF packages that are covered by the LGPL for your own
free or fee-based programs.

Some packages are covered by the Burning Board License. These can only be used if
you have purchased a respective license from WoltLab for every installation of your own
application. Alternatively, individual license agreements are also negotiable.

10

http://www.gnu.org/licenses/lgpl.html

2. Installation

2.1. System requirements

The following requirements must be fulfilled for the successful installation of the WoltLab
Community Framework:

• A webserver with PHP 5 support

• Apache 2 with PHP 5.2.x-Module recommended

• A MySQL-Database version 4.1.2 or higher

• Approx. 6 MB hard-disc storage space

• An FTP-Program in order to load the program files onto the Webserver/Webspace

2.2. Download

Please begin by using the WCF which is included in the download file of the forum
software WoltLab Burning Board. We are still working on a separate download of the
WCF.

2.3. Performing the installation

For the installation of the WCF you need two files that can be found in the downloaded
zip-archives:

install.php The installation script, which can be conveniently executed via the browser.

WCFSetup.tar.gz Contains all files and packages of the Community Framework.

Please load both of these files onto your webserver and execute the installation file
install.php. The minimum steps to be completed are as follows:

1. Choosing the language of the installation assistant

2. Accepting the license agreement

11

2. Installation

3. Checking the system requirements

4. Selecting the installation directory of the WCF

5. Selecting character encoding and language

6. Entering the database access data

7. Creating an administrator account

8. Optionally installing other standalone applications

12

3. The package system

3.1. The fundamentals

The elementary constituent of the WCF is the package system. Packages are single
components that encapsulate a certain functionality and that can be used by other
packages. Through the WCF, a multiplicity of packages can be installed, automatically
updated or managed.

A package is an archive of files. The most important file is the package.xml. This
includes all important details of the package such as its name, which other packages
it depends upon and which tasks need to be completed during the installation of the
package.

1. simple package Within a simple package, functions are merely provided without
being actively used. A package can deliver PHP classes, own database tables,
language files, graphics and templates. Packages can depend upon other packages.

2. standalone application The standalone application package uses the functions of
the other (simple) packages and provides its own interfaces. Only standalone
applications have their own graphic user interface.

3. plug-in A plug-in is an extension of a standalone application containing new func-
tions. Interfaces that have previously been defined by other packages are used
for that purpose. This means the plug-in is optional, it is not a prerequisite of a
package.

3.2. Included basic packages

The Community Framework provides the most essential basic functions of web applica-
tions. Further features are included as free basic packages. The following systems are
permanently integrated into the WCF:

Package administration This package systems manages the installed packages, installs,
updates and uninstalls packages.

Database connection The WCF provides a so-called “Database Abstraction Layer”
that facilitates the use of a MySQL database.

13

3. The package system

User management and authentication The user management creates, edits and re-
moves user accounts. User can authenticate themselves (e.g. to LDAP1).

Group management The group management carries out the classification of users into
groups.

Sessions The WCF manages sessions for you.

Language administration Allows multilingual user interfaces.

Caching The caching system allows the intermediate storage of data that needs to be
rapidly accessible in the data system.

Events The event system permits the execution of functions at previously defined events.

Template system The WCF provides an own template system for the distribution of
the sites.

com.woltlab.wcf

The packages as described above are provided through the installation of the WCF.
Additionally, all important Package Installation Plugins (see chapter 13 on page 66) are
also included.

com.woltlab.wcf.data.cronjobs

Cronjobs are time-controlled tasks known from the world of Unix. Real cronjobs are not
available most of the time as they require their own server. That is why the functionality
of Cronjobs is imitated by AJAX and PHP. Through this simulation, regular tasks can
still be executed. These tasks could include the refreshment of readouts. Often, certain
readouts are buffered (caching), because they are frequently required by users to relieve
the database. With the help of a Cronjob, a buffer like that can for instance be updated
once a day.

com.woltlab.wcf.data.feed.reader

Information on websites is nowadays often proviced through an RSS-feed. This plugin
permits the regular import of this information, for the purpose of displaying it within
your own application.

1http://en.wikipedia.org/wiki/Ldap

14

http://en.wikipedia.org/wiki/Ldap

3.2. Included basic packages

com.woltlab.wcf.data.help

This package delivers the simple facility of implementing an end user help for your own
application. It is designed in a way so that your own help topics can be defined through
an XML-file. A search function is available to the end user and in addition a referrer2

can be defined for every topic. If a user is on a site and accesses the help function, he
can be referred directly to the corresponding help page.

com.woltlab.wcf.data.image

Within this module help functions that can be used for the processing of images are
provided. This includes for instance the provision of a thumbnail-class to create small
preview images.

com.woltlab.wcf.data.image.captcha

Captcha-images are an important instrument to preserve the safety of web applications.
Whenever data can be entered into forms by unregistered users, this creates points
of attack for automated spam robots. This can be precluded by using these security
images. The drawback of this solution is that these pictures are no barrier-free and
blind or visually impaired people cannot decipher the letters and numbers.

com.woltlab.wcf.data.message

The message package is to be used when a typical message form is available. In general,
this would consist of a subject and a text.

com.woltlab.wcf.data.message.attachment

When composing messages, other media are often embedded as attachment files. This
package facilitates this.

com.woltlab.wcf.data.message.bbcode

When composing messages on websites, these can be formatted with the help of BB-
Codes. They are a kind of HTML substitute, because the direct use of HTML is often
not recommendable due to safety reasons.

2The Referrer is the Internet address, the current page was called on this one.

15

3. The package system

com.woltlab.wcf.data.message.censorship

In order to censor certains words in a message, this module is required. For this, a list of
words that are prohibited must be compiled. On sending, the message is then checked
for the words on the list and if applicable there will be an error message.

com.woltlab.wcf.data.message.poll

This package can be used to compose a message containing a poll.

com.woltlab.wcf.data.message.search

The search function is the central component of every system that stores messages. The
concrete implementation of this search uses the MySQL-Fulltext-Index.

com.woltlab.wcf.data.page

The package contains templates for the outer frame of a page. In addition, it also brings
the PageLocation-PIP (see chapter 13.2.11 on page 82).

com.woltlab.wcf.data.page.headerMenu

This module provides the functionality needed to display a main menu on the page.
Through an XML-file, any number of entries can be defined. During the installation
these are inserted into the database.

com.woltlab.wcf.form.message

This package contains all the functionalities required to compose or edit a message.

com.woltlab.wcf.form.message.wysiwyg

The WYSIWYG-Editor is offered for the composition of messages. This enhances us-
ability because the user can see directly how formatting affects the text when creating
a message, with no knowledge of the corresponding codes required.

16

3.2. Included basic packages

com.woltlab.wcf.form.user

All user actions concerned with the user account, such as registering, signing in, changing
e-mail address or requesting a lost password are covered by this package.

com.woltlab.wcf.page.user.profile

With the help of this component, the users’ public profiles can be displayed.

com.woltlab.wcf.system.style

The style package already offers the corresponding formatting for many of the applica-
tion’s user elements. It provides CSS classes that amongst others govern the displays of
Tab-Menus, tabular lists or buttons.

com.woltlab.wcf.system.template.pack

Use this package if different template groups are to be supported within the application.
That way, the community users can choose between several styles based on different
templates.

com.woltlab.wcf.system.template.plugin.includePHP

This plugin facilitates the use of PHP-Code within the templates.

17

4. Quick start

To receive fast results, this chapter provides a short overview of the WCF class and the
object-oriented approach of the WoltLab Community Framework.

4.1. The class WCF

The class WCF (in the file wcf/lib/system/WCF.class.php) is the central class of Wolt-
Lab Community Framework. It facilitates amongst others access to the database, the
template or language system.

The WCF is programmed object-orientated, so the database, template system, etc. have
their own objects (class entities). The WCF uses objects according to the so-called Sin-
gleton Pattern1, which ensures that exactly one instance of these classes exists through-
out the whole application. Access is carried out through the WCF class, in which the
entities are saved as static member variables.

4.1.1. Database access

With WCF::getDB() the instance of the database object is obtained, so that queries to
the database server can be sent and processed, e.g.

// send the SQL query $sql to server

$result = WCF::getDB()->sendQuery($sql);

// receive result and scan every row

while ($row = WCF::getDB()->fetchArray($result)) {

// ..

}

Further information on the use of the database system can be found in chapter 5 on
page 21.

1http://en.wikipedia.org/wiki/Singleton_pattern

18

http://en.wikipedia.org/wiki/Singleton_ pattern

4.1. The class WCF

4.1.2. Template system

With WCF::getTPL() you obtain the instance of the template system.

// Assignment of variables

WCF::getTPL()->assign(’action’, $action);

// Display the template $templateName

WCF::getTPL()->display($templateName);

You will find more detailed information in chapter 6 on page 25.

4.1.3. Signed-in user

WCF::getUser() delivers the object which represents the current visitor of the site.
Normally, this is an instance of the UserSession class or a class inherited from this (e.g.
in the standalone application WoltLab Burning Board these can be the inherited classes
WBBUserSession or WBBGuestSession).

The UserSession class is in turn inherited from the class User.

WCF::getUser()->userID

WCF::getUser()->username

4.1.4. Session

WCF::getSession() delivers the instance of the class Session (or a class inherited from
this), e.g. for the registration or the readout of session variables.

// get all Session Variables

$sessionVars = WCF::getSession()->getVars();

// get only the Session Variable ’test’

$test = WCF::getSession()->getVar(’test’);

// register the Variable ’blub’

WCF::getSession()->register(’blub’, $blub);

In chapter 9 on page 53, you will learn more about this topic.

19

4. Quick start

4.1.5. Language system

WCF::getLanguage() delivers the instance of the class Language, e.g. to load the name
of the language variable:

WCF::getLanguage()->get("name.der.variablen");

4.1.6. Cache

The cache is used to buffer frequently used data in the file system. WCF::getCache()

delivers the instance of the class CacheHandler, which manages the cache. Find out
more in chapter 10 on page 55.

// Read data

$data = WCF::getCache()->get(’spiders’);

4.1.7. Request

WCF::getRequest() delivers the instance of the class RequestHandler. The RequestHandler
can be used to establish which page has been access. See chapter 11 on page 57.

4.2. The class DatabaseObject

All classes representing a dataset are inherited from the abstract class DatabaseObject
(also referred to as data-classes from hereon). The data that is to be managed is buffered
in the class variable $data. In practice, $data is often an associative array.

The arguably most important and most useful feature of the DatabaseObject-class is
the use of the magic method __get() of PHP52.

This allows access to the variable $dataObject->myVar through the notation $dataObject->data[$myVar]

– provided that $dataObject->myVar does not exist as a class variable. Only this magic
method allows accesses such as WCF::getUser()->username.

Normally, for every Data-Class you will be able to find a corresponding DataEditor-
class. The DataEditor-Class frequently contains static methods such as create(),
delete() and insert(). While the Data-Classes ensure that the data is read out, the
DataEditor-classes are employed to create new datasets or to edit or delete existing
ones.

2see http://www.php.net/manual/en/language.oop5.magic.php
and http://www.php.net/manual/en/language.oop5.overloading.php

20

http://www.php.net/manual/en/language.oop5.magic.php
http://www.php.net/manual/en/language.oop5.overloading.php

5. Database interface

Although the WoltLab Community Framework provides the rudiments of a database
abstraction layer, the current version 1 so far only contains implemented support for the
database system MySQL. Implements for other database systems have to be inherited
from the abstract class Database.

5.1. Methods of the Database class

sendQuery

resource sendQuery (string $query)

The method sendQuery() sends an SQL-query to the database server and returns the
result identifier. If the SQL query fails, a DatabaseException is thrown.

Note: The SQL query should not close with a semicolon.

sendUnbufferedQuery

resource sendUnbufferedQuery (string $query)

sendUnbufferedQuery() sends an SQL query to the database server without immedi-
ately getting the datasets of the result2.

Note: countRows() and getAffectedRows() cannot be applied to result identifiers of
sendUnbufferedQuery().

1State: WCF Version 1.0.1
2siehe auch http://www.php.net/manual/en/function.mysql-unbuffered-query.php

21

http://www.php.net/manual/en/function.mysql-unbuffered-query.php

5. Database interface

fetchArray

array fetchArray ([resource $queryID = null], [int $type = null])

fetchArray() delivers a dataset of an SQL-query in the form of an array. If the pa-
rameter $queryID has not been entered, the SQL-query last sent is assumed. The
second optional parameter $type defines the type of the array. The standard value
Database::SQL_ASSOC delivers an associative array, Database::SQL_NUM a numerical
array and Database::SQL_BOTH delivers both.

getFirstRow

array getFirstRow (string $query, [integer $type = null])

getFirstRow() is used when only the first dataset of an SQL-query is needed. In this
case, getFirstRow() is an abbreviated notation for the execution of sendQuery() and
fetchArray().

Like with fetchArray() the optional parameter $type defines the type of the array.

getResultList

array getResultList (string $sql)

getResultList() sends an SQL-query, collects the datasets and returns them in a mul-
tidimensional array. getResultList() is convenient for reading out all the datasets of
an SQL-query if you do not wish to work in the script subsequently.

countRows

integer countRows ([resource $queryID = null])

countRows() delivers the number of datasets in result of an SQL-query. CountRows()

can only be applied to SELECT-queries. If you want to determine the number of manipu-
lated datasets from an UPDATE-, INSERT- or DELETE-query, please use getAffectedRows().

If no $queryID is specified, the SQL-query last sent is assumed.

getAffectedRows

integer getAffectedRows ()

getAffectedRows() returns the number of datasets manipulated by the most recently
executed INSERT-, DELETE or UPDATE-query.

22

5.1. Methods of the Database class

getInsertID

int getInsertID ()

getInsertID() delivers the ID that was assigned for a field of the type AUTO INCREMENT
during the last INSERT-query. getInsertID() delivers 0, when the preceding INSERT-
query has not generated an AUTO INCREMENT value.

If you wish to save the value for later use, make sure to access getInsertID() directly
after the INSERT-query which created the value.

seekResult

void seekResult ([integer $queryID = null], integer $offset)

seekResult() moves the reading pointer of a quantity of results to the $offset position.
The pointer begins at position 0, i.e. position 0 is pointing at the first set of data.

If the parameter $queryID has not been entered, the SQL-query last sent is assumed.

registerShutdownUpdate

void registerShutdownUpdate (string $query, [integer $key = null])

registerShutdownUpdate() inserts an UPDATE-command in a waiting list of UPDATE-
commands, that are executed at the end of the script.

escapeString

string escapeString (string $string)

escapeString() is a wrapper for the PHP-function mysql_real_escape_string() and
has to be used for the masking of special characters on strings if these are going to be
used in an SQL-query.

Note: Instead of the call WCF WCF::getDB()->escapeString($string), you can also
type escapeString($string).

getErrorDesc

string getErrorDesc ()

Delivers the error message of a previously executed database query.

23

5. Database interface

getErrorNumber

int getErrorNumber ()

Delivers the number of an error message of a previously executed database query.

getVersion

string getVersion ()

Delivers the version number of the database system.

getDBType

string getDBType ()

Returns the database type in use.

getDatabaseName

string getDatabaseName ()

Returns the name of the database in use.

getCharset

string getCharset ()

Returns the used character set.

getTableNames

array getTableNames ([mixed $database = ”])

Returns an array with all tables existent in the database.

getTableStatus

array getTableStatus ()

Returns an array with detailled information on every table in the database.

24

6. The template system

The template system of the WoltLab Community Framework in syntax and operation
mode is geared to Smarty1, the compiling template system, but without reaching its
massive functional range.

The template system reads the template files (file ending .tpl) and converts them
directly into PHP-scripts. This means templates only need to be parsed after being
changed. For the following requests, the generated PHP-script is simply executed.

In addition, the template system can be expanded by custom functions, more on this
later in chapter 6.6 on page 42.

6.1. Basic syntax for template designers

All template commands are surrounded by curly brackets, e.g. {include file="boardList"}.

6.1.1. Variables

Before being able to use a template variable in the templates, it has to be declared in
the corresponding PHP-script and a value has to be assigned to the variable.

This works with the assign() method of the class Template, which is described in more
detail in 6.2.1 on page 27.

Template variables within the templates are, like PHP-variables, activated through the
dollar sign $. Additionally, PHP-constants can be accessed as well. Program 6.1 on the
next page on the following page gives a few examples.

1http://smarty.php.net

25

http://smarty.php.net

6. The template system

@ and #

When putting out variables, HTML special characters are masked automatically by the
template system. If this is not desired in certain cases, this can be disabled with the
@-sign: {@$variable}.

Warning: Do not use @ unless you would like the HTML special characters to be
displayed as such.

For the output of numerical values, the pound key # is very useful. The pound key
effects the automatical formatting of the numbers, i.e. decimal numbers are rounded to
two decimal places and separated by the decimal divider depending on the language. If
applicable, a divider for the thousands is inserted: {#$number}

Programm 6.1 Access of variables within the templates

{$variable}

{@$variable}

{# $variable}

{CONST}

{$array .0} (for $array [0])

{$array.key} (for $array[’key ’])

{$array.$key} (for $array[$key])

{$object ->var}

{$object ->method($foo)}

{WCF:: getUser()->userID}

6.1.2. Commentaries

Single sections in templates can be exluded from parsing through commentaries. A note
is opened by {* and closed by *}.

{* This is a commentary *}

Commentaries can also be extended over several lines.

Commentaries are not sent to the client during the XHTML-output.

6.1.3. Functions

Template functions are accessed through the syntax {name of function}. A distinc-
tion is made between normal functions and blocking functions. Blocking functions are
functions of the form {block} ... {/block} that surround a text, similar to XML-tags.
These functions treat the surrounded text as an input.

26

6.2. The template system for programmers

Parameters

With help of the syntax {name of function param1=$val1 param2="value"}, param-
eters can be forwarded to the function nameoffunction. With blocking functions, the
paramaters are inserted into the opening function request. {block param1=$val1} ... {/block}

6.1.4. Modifiers

Modifiers are used to apply a function to a variable. Both your own modifiers or the
php-functions can be accessed. The syntax is short and simple: Add |modifier the
variable to open the modifier, e.g. {$var|empty}.

Parameters

A modifier is applied to a template variable. It is however also possible to pass on further
parameters to the modifier. For this, add the parameter values to the modifier name
separated through colons :
{$var|modifier:"val1":"val2":$foo}

Program 6.2 shows some typical use cases for modifiers:

Programm 6.2 Application of modifiers to template variables

{@TIME_NOW|fulldate}

{$title|truncate :40:"..."}

{function param1=$val1|modifier}

{function param1=$val1|modifier:$val2:"val3"}

6.2. The template system for programmers

In this section, the most important methods of the class Template are presented.

6.2.1. assign

void assign (mixed $variable, [mixed $value = ”]) The assign()-method declares and
initiates one or more template variables, so they subsequently be used in the templates.
The assign()-methog accepts a name- or value pair or alternately an associative array
with name or value pairs (see program 6.3 on the next page).

27

6. The template system

Programm 6.3 Variable allocation with assign

// ..

$variable = ’value ’;

$object = new myObject ();

$array = array (1,2,3,4);

WCF:: getTPL()->assign(’variable ’, $variable);

WCF:: getTPL()->assign(array(

’object ’ => $object ,

’array ’ => $array

));

6.2.2. append

void append (mixed $variable, [mixed $value = ”])

The append()-method attaches contents to an existing template variable (concatena-
tion). Like the assign()-method, the append()-method too accepts a name or value
pair or an associative array with name or value pairs.

6.2.3. assignByRef

void assignByRef (string $variable, mixed &$value)

assignByRef() creates a template variable with reference to a PHP-variable. For the
argument, the name of the template variable and of the PHP-variable are wanted.

6.2.4. clearAssign

void clearAssign (mixed $variable)

The clearAssign()-method deletes one or several template variables from memory.
The method expects as argument the name of the template variables to be deleted or
an array with the names of the template variables to be deleted.

6.2.5. clearAllAssign

void clearAllAssign ()

clearAllAssign() deletes all template variables. This method does not possess any
arguments.

28

6.2. The template system for programmers

6.2.6. display

void display (string $templateName, [boolean $sendHeaders = true])

To display a template send the output to the client, the display()-method is used.

The method wants the name of the template. The second (boolean) argument $send-

Headers is optional and determines if the HTTP HEADERs of the site are to be sent2.

The display()-method automatically takes care of the compiling of the template.

When the sending of the HTTP HEADERs is activated, the events shouldDisplay and
didDisplay are also triggered before and after the output of the template.

6.2.7. fetch

string fetch (string $templateName)

If you wish to display a template without immediately sending the output to the client,
e.g. continue processing it instead, use the fetch()-method to return the output of the
template.

The method expects the name of the template as argument.

6.2.8. registerPrefilter

void registerPrefilter (mixed $name)

A prefilter is a program that can be applied to the template contents before the com-
pilation of a template. To use a prefilter, it needs to be registered first by using
registerPrefilter().

registerPrefilter() expects as an argument the name of the prefilter or an array
with the names of multiple prefilters.

How to create your own prefilters you will find out in 6.6.4 on page 43.

2see class HeaderUtil

29

6. The template system

6.3. Fixed integrated functions

6.3.1. if,else,elseif – Case differentiation

The function {if} ... {/if} is used for conditions in templates. This provides (al-
most) the same possibilities as in PHP-scripts. As in PHP, the expressions {else} and
{elseif} (or alternatively {else if}) exist as well.

Programm 6.4 Syntax of the {if}-function

{if CONDITION1}

CONDITION1 is true

{elseif CONDITION2}

CONDITION2 is true

{elseif CONDITION3}

{else}

none of the CONDITIONs are true

{/if}

The syntax of the {if}-function can be seen in program 6.4. Within this, CONDITION1,
CONDITION2 and CONDITION3 are expressions which, besides variables and modifiers, also
allow the operators ||,&&,>, >=,<,<=,==,===,!=,!===3 known from PHP.

Warning: In the WoltLab Community Framework 1.0.0., bracketed expression are not
possible in CONDITIONs of the if-function4.

Programm 6.5 Examples of the {if}-function

{if $userMessages|isset}{ @$userMessages }{/if}

{if $boards|count > 0}

...

...

{if $hasChildren}<ul id=" category{@$boardID }">{else}{/if}

{if $openParents > 0}{@""| str_repeat:$openParents }{/if}

{/if}

{if $this ->user ->userID}

{if $this ->user ->activationCode && REGISTER_ACTIVATION_METHOD == 1}

....

{/if}

...

{elseif !$this ->session ->spiderID}

...

{/if}

3see http://www.php.net/manual/en/language.operators.logical.php
and http://www.php.net/manual/en/language.operators.comparison.php

4http://www.woltlab.com/forum/index.php?page=Thread&threadID=122382

30

http://www.php.net/manual/en/language.operators.logical.php
http://www.php.net/manual/en/language.operators.comparison.php
http://www.woltlab.com/forum/index.php?page=Thread&threadID=122382

6.3. Fixed integrated functions

6.3.2. include

With the {include}-function, a different template can be loaded into the current tem-
plate. This way, frequently used sections can for instance be outsourced into their own
template and then be integrated into other templates.

The {include}-function expects the parameter file, which defines the template that
is to be integrated.

Programm 6.6 Syntax of the {include}-function

{include file=’headerMenu ’}

{include file=’header ’ sandbox=false}

{include file=’template ’ assign=’var ’ append=true}

The integrated template can also be assigned additional template variables via parame-
ter: {include file=’header’ var1=’foo’ var2=$foo}.

Integrated templates are run in a“sandbox”, i.e. changes to the template variables within
the integrated templates do not have any effect on the variables in the current templates.
These properties can be managed through an optional sandbox-parameter.

Through the optional parameter assign, the content of an integrated template can be
allocated to a template variable. When passing the optional parameter append=true,
the content is attached the to template variable designated in assign.

Parameter Required Default Imapct

file yes – Name of the integrated template
assign no – Variable to which the content of the tem-

plate is to be assigned
append no false Attach content to the template variable?
sandbox no true activate/deactivate “Sandbox”
beliebig no – Variable passed to the integrated template.

Table 6.1.: Parameters of the {include}-function

6.3.3. foreach

The function {foreach from=$array item=’val’} ... {/foreach} is the equivalent
to the foreach-loop5 foreach($array as $val) { ... } in PHP.

5http://www.php.net/manual/en/control-structures.foreach.php

31

http://www.php.net/manual/en/control-structures.foreach.php

6. The template system

The required parameter from specifies the array that is to be passed through in the
loop. For the required parameter item, specify the name of the variable that the current
active element of the array is assigned to.

When using the optional parameter key, the at any one time current key is saved in the
variable specified by key.

Programm 6.7 Examples for the {foreach}-loop

<?php

$arr = array("one", "two", "three ");

$arr2 = array(

array("a", "b"),

array("y", "z")

);

WCF:: getTPL()->assign(array(

’arr ’ => $arr ,

’arr2 ’ => $arr2

));

?>

{* foreach -loop *}

{foreach from=$arr item=value key=key}

Key: {$key}

Value: {$value}

{/ foreach}

{* multidimensionals arrays can be passed with nested foreach -loops too *}

{foreach from=$arr2 item=v1}

{foreach from=$v1 item=v2}

{$v2}

{/ foreach}

{/ foreach}

6.3.4. section

The {section}-function is used for loop-runthroughs that require the functionality of a
for-loop from PHP. The syntax is more complex compared to {foreach}, but in return
{section} offers several additional functions.

The required parameter name includes the name of the counter variables, for which the
iteration will be used, e.g. name=i or name=j etc.

The requires parameter loop determines the number of iterations. loop can also be an
array. In this case, the number of elements is the number of iterations. You however
can also pass a whole number.

With the parameters start, step and max, the iteration can be manipulated. Normally,
the counter variable defined by name will begin at 0. With the help of start, a different
starting value can be forced.

32

6.3. Fixed integrated functions

Parameter Required Default Impact

loop yes – Determines the number of iterations, can
be a whole number of an array.

name yes – Name of the counter variable.
start no 0 Starting position of the counter variable

(whole number).
step no 1 Increment of the iteration (whole number).
max no – Maximum number of iterations (natural

number).
show no true show or hide output of the {section}.

Table 6.2.: parameters of the {section}-function

step prescribes the increment of the iteration. The standard value is 1. In that way
start=1 and step=2 will iterate over the set {1, 3, 5, 7, . . . }.

max limits the number of iterations to a certain value.

Through show=false the loop run through can be deactivated.

Note: When nesting {section}-loop make sure to choose a custom, unique name-
parameter for each loop.

Table 6.2 offers an overview of the parameters and Program 6.8 offers an example.

Programm 6.8 Example for the use of the {section}-loop

{* displays 0,2,4,6,8 *}

{section name=i loop =10 step =2}

{$i}

{section}

6.3.5. capture

The {capture} ... {/capture}-function activates the output buffering6 and saves the
output of the template codes, which is enclosed by the function, in a template variable.
In the template code, variables and other template functions are analyzed as normal.

The name of the template variables is defined by the parameter assign="var". The
content between {capture assign="var"} and {/capture} will then be saved in the
template variable $var.

6to the PHP-function ob_start and ob_get_contents

33

6. The template system

If you wish to attach the template code to the existing content of a template variable
(instead of overwriting the contents of the template variable), you can use the parameter
append: {capture append="var"} ... {/capture}.

6.4. Additional provided functions

6.4.1. append

The {append}-function allows for the append()-method of the current template object
to be accessed in the template. Also see 6.2.2 on page 28 for this.

{append var=name value="foo"}

Technically, this is a TemplateCompilerPlugin - i.e. the method is already called during
the compiling of the template.

6.4.2. assign

Like with the {append}-function, {assign} accesses the method of the same name of
the current template object. Also see 6.2.1 on page 27 for this.

{assign var=name value="foo"}

This is technically also a TemplateCompilerPlugin.

6.4.3. counter

The {counter}-function is used to create a series of numbers. On first call, a counter
variable is initialized that is increased with every further access. Both the starting value
(start) and the increment of the counter (skip) are freely selectable (default values are
1).

You can also detemine if the value of counter is to be output in the template (print,
default ist true) und if the value is to be assigned to a template variable (assign).

Through the parameter direction="down", you can make the counter count in reversed
order. This has the same effect as a negative value for the skip parameter.

Note: If you require several counters that are independent of each other, you need to
assign these unique names with help of the name-parameter.

34

6.4. Additional provided functions

Parameter Required Default Impact

name no default internal name of the counter
start no 1 start value of the counter (whole number)
skip no 1 increment of the counter (whole number)
direction no up direction of the counter (“up” or “down”)
print no true output counter
assign no – assign counter to a template variable

Table 6.3.: Parameter of the {counter}-function

Programm 6.9 Example of the use of the {counter}-function

{foreach from=$boards item=child}

...

{counter assign=boardNo print=false}

...

{$boardNo}

...

{/ foreach}

6.4.4. cycle

With {cycle}, you can alternate between two values in turns. This is required frequently,
e.g. to format the rows alternately in the output of a table.

Parameter Required Default Impact

values yes - two comma-separated values, between
which the circulation takes place

name no default internal name of the cycle
print no 1 Werte ausgeben
advance no 1 automatically etrieve next value
reset no 0 reset

Table 6.4.: Parameter of the {cycle}-function

6.4.5. fetch

The {fetch}-function facilitates the outputting of file content. These can be stored in
the local data system or be retrieved through HTTP or FTP. Internally, the php-function
file_get_contents() is used.

35

6. The template system

Programm 6.10 Example of the use of the {cycle}-function

{foreach from=$boards item=child}

...

<tr style="background -color: {cycle values ="#eee ,#fff"}">

...

</tr>

...

{/ foreach}

The parameter assign is optional in this case. With this, you can save the file contents
in a template variable and only output at a later point of time.

{fetch file=’x.html’}

{fetch file=’x.html’ assign=var}

This is technically also a TemplateCompilerPlugin.

6.4.6. htmloptions

The function {htmloptions} creates an output of an HTML-Select-Box with the corre-
sponding option elements.

Programm 6.11 Example of the use of the {htmloptions}-function

{* Possible Array containing values *}

$array = array(

"key1" => "value1",

"key2" => "value2"

"option group" => array(

"keyA" => "valueA",

"keyB" => "valueB"

);

);

{* Possible usage of htmloptions *}

{htmloptions options=$array}

{htmloptions options=$array selected=$selected}

{htmloptions options=$array selected=$selectedArray}

{htmloptions options=$array name="x"}

{htmloptions output=$outputArray}

{htmloptions output=$outputArray values=$valueArray}

{* Possible Display *}

<select >

<option label=" output" value="value">output </option >

</select >

36

6.4. Additional provided functions

Parameter Required Default Impact

name no - Name of the select-box.
options yesa - Specification of an associative ar-

ray with options-values and options-
names.

output yesb - Specification of an array with options-
names.

values yesc - Specification of an array with values
of the corresponding options.

selected no - The specified option has already been
highlighted (multiple highlighting is
possible through an array).

disableEncoding no 0 Opens the htmlspecialchars()-
method internally to protect from
incorrect entries.

aAlternatively, output and values or just output can be used respectively
bAlternatively, options can be used.
cCan only be used in connection with output. For empty values, an options group is created. Subse-

quent values should be saved in a nested array.

Table 6.5.: parameters of the {htmloptions}-function

6.4.7. htmlcheckboxes

The function {htmlcheckboxes} creates a dump of several checkbox elements as HTML-
code.

Programm 6.12 Example of the use of the {htmlcheckboxes}-function

{* Possible use of htmlcheckboxes *}

{htmlcheckboxes name="x" options=$array}

{htmlcheckboxes name="x" options=$array selected=$selected}

{htmlcheckboxes name="x" options=$array selected=$selectedArray}

{htmlcheckboxes name="x" output=$outputArray}

{htmlcheckboxes name="x" output=$outputArray values=$valueArray}

{* Possible display *}

<label ><input type=" checkbox" name="x[]" value="value" />output </label >

6.4.8. implode

With {implode} you can output the contents of arrays, similar to what you are used to
from {foreach}. The only difference is that the elements are automatically connected

37

6. The template system

Parameter Required Default Impact

name yes - Name of the checkbox-list.
options yesa - Output of an associative array with

checkbox-values and -labels.
output yesb - Specification of an array with

checkbox-labels.
values yesc - Specification of an array with values

of the corresponding checkboxes.
selected no - The element specified has already

been highlighted (multiple highlight-
ing is possible through an array).

disableEncoding no 0 Opens the htmlspecialchars()-
method internally to protect from
incorrect entries.

separator no - ADesignation of text/HTML to be in-
serted before every element.

aAlternatively, output and values or just output can be used respectively.
bAlternatively, options can be used.
cCan only be used in connection with output.

Table 6.6.: Parameters of the {htmlcheckboxes}-function

through a string. For this, there is the parameter ‘glue’ for which you can specify an
optional string. By default, “,” is assumed.

If for example you want to implement a dump of names and separate these through a
comma, {implode} is the best choice. With {foreach}, you would have to create a
special counter to bypass the problem that there is a separator in front of every element
(because no separator is supposed to be in front of the first element).

Example 6.13 shows the use of the {implode}-function.

Programm 6.13 Example of the use of the {implode}-function

{* Possible use of implode *}

{implode from=$names key=key item=name}{$key}: {$name }{/ implode}

{implode from=$names item=name glue =";"}{ $name }{/ implode}

{* Possible display *}

0: Name a, 1: Name b, 2: Name c

Name a;Name b;Name c

38

6.4. Additional provided functions

6.4.9. lang

With the {lang}-function you can call up language variables. More on the topic of
language variables can be found in section 7.2 on page 48.

Within {lang}, specify the name of the designated language variable. If this name is dy-
namic, i.e. derived from another variable or you assign other parameters to the language
variable, this means that this is a dynamic language variable. See example 6.14.

Please note that it with likely only be possible with WCF 1.1 to use template scripting
in dynamic language variables.

Programm 6.14 Example of the use of the {lang}-function

{* static language variable *}

{lang}wcf.example {/lang}

{* dynamic language variable *}

{lang}wcf.example.$foo{/lang}

{lang foo=$foo bar=$bar}wcf.example {/lang}

Technically, this is a TemplateCompilerPlugin - i.e. the method is already called during
the compiling of the template.

6.4.10. pages

With the help of the {pages}-function, you can easily create a page number navigation.
If you spread the content of one section over several pages, this lets you put out the
individual page numbers.

Parameter Required Default Impact

pages yes - number of pages
page no - current page
link yes - Link to the respective page (see code

example).
assign no - Output can be assigned to a variable.
print no 1 Output of the page numbers.

Table 6.7.: Parameters of the {pages}-function

39

6. The template system

Programm 6.15 Examples for the use of the of the {pages}-function

{* creates 10 page numbers *}

{pages pages =10 link=’page -%d.html ’}

{* creates 10 page numbers with 8 being marked as the current page *}

{pages page=8 pages =10 link=’page -%d.html ’}

{* assigns the page numbers to the variable output , no output *}

{pages page=8 pages =10 link=’page -%d.html ’ assign=’output ’}

{* assigns the page numbers to the variable ’output ’, incl. output *}

{pages page=8 pages =10 link=’page -%d.html ’ assign=’output ’ print=true}

6.5. Included modifiers

6.5.1. concat

The concat-modifier facilitates the connection of several strings. The following examples
returns a string that in PHP-syntax would be created by "left".$right.

{"left"|concat:$right}

6.5.2. date

The date-modifier converts a Unix timestamp into a format legible by humans. The
standard format for dates contains the year, the month and the day in the following
display: “5. November 2007”.

{$timestamp|date}

{"132845333"|date:"%Y-%m-%d"}

6.5.3. encodejs

With the help of the encodejs-modifiers, it is possible to format strings of the use Single-
Quote Javascript-String. Single quotes and word-wraps are escaped in the process.

{$string|encodejs}

{"bl’’ah"|encodejs}

40

6.5. Included modifiers

6.5.4. filesize

The filesize-modifiers formats file sizes that are specified in bytes.

{$string|filesize}

{123456789|filesize}

6.5.5. fulldate

The fulldate-midifier formats a Unix timestamp into a date in the following display:
“Monday, 5. November 2007, 11:32”.

{$timestamp|fulldate}

{"132845333"|fulldate}

6.5.6. shorttime

With shorttime, you can format a Unix timestamp with a date in the following display:
“5. November 2007, 11:32”.

{$timestamp|shorttime}

{"132845333"|shorttime:"Y-m-d h:ia"}

6.5.7. time

The time-modifier formats a Unix timestamp with a date in the following display: “Mon-
day, 5. November 2007, 11:32”. This is difference from fulldate because the date is
replaced by “Today” or “Yesterday” respectively.

{$timestamp|time}

{"132845333"|time:"%Y-%m-%d %I:%M%p"}

6.5.8. truncate

With the truncate-modifier, you can cut off a string after a certain number of characters.
You can also define anything that should be attached to the string.

{$foo|truncate:35:’...’}

41

6. The template system

6.6. Expanding the template system

The template system is very flexible and can be extended by your own modifiers, func-
tions or prefilters. For this, all you need to do is program a PHP-class that implements a
certain interface and then save this PHP-class in the folder wcf/lib/system/template/plugin
(or alternatively install it through a package in this folder).

6.6.1. Custom modifiers

Custom modifiers need to implement the TemplatePluginModifier7 interface. This
interface contains the method execute().

string execute (array $tagArgs, Template $tplObj)

$tagArgs contains all parameters of the modifier. The template variable content that
the modifier is applied to is available in the variable $tagArgs[0]. A second parameter
of the modifier would be saved in the variable $tagArgs[1] , etc.

Additionally, the variable $tplObj provides an instance of the template class. As a
return value, the changed variable content is expected.

You can see an example in program 6.17 on page 46.

6.6.2. Custom functions

For custom functions, there is the TemplatePluginFunction8 interface with the method
execute().

string execute (array $tagArgs, Template $tplObj)

$tagArgs is an assoziatives array containing the parameters and $tplObj is the in-
stance of the the template class. A call in the template {function parameter="test"}

results in $tagArgs[’parameter’] containg the value “test”.

7in the file wcf/lib/system/template/TemplatePluginModifier.class.php
8in the file wcf/lib/system/template/TemplatePluginFunction.class.php

42

6.6. Expanding the template system

6.6.3. Custom block functions

Customs block functions need to implement the TemplatePluginBlock9.

This interface contains the methods execute(), init() and next().

string execute (array $tagArgs, string $blockContent, Template $tplObj)

void init (array $tagArgs, Template $tplObj)

boolean next (Template $tplObj)

The method init() is the first to be called. As long as next() returns true, the method
execute() is called up in a while-loop. In this way, loop functions are realisable. If your
block functions are only supposed to be called once, next() must only return true for
the first call. For this, you can for instance use a custom class variable.

The array $tagArgs contains one associative array respectively with the parameters of
the block function.

Warning: next() definitely needs to return false at one point, otherwise your block
function creates an infinite loop.

6.6.4. Custom prefilters

Custom prefilters need to implement the TemplatePluginPrefilter10. This interface
solely contains the method execute.

string execute (string $sourceContent, TemplateCompiler $compiler)

execute() can in this case perform any desired operations on the content of a tem-
plate ($sourceContent). Additionally, the current instance of the TemplateCompiler is
available through $compiler.

As a return value, the (changed) template content is expected.

An example for implementation you can find in program 6.17 on page 46.

9in the file wcf/lib/system/template/TemplatePluginBlock.class.php
10in the file wcf/lib/system/template/TemplatePluginPrefilter.class.php

43

6. The template system

6.6.5. Custom Compiler functions

Compiler functions need to implement the interface TemplatePluginCompiler11 with
the methods executeStart() and executeEnd().

string executeStart (array $tagArgs, TemplateCompiler $compiler)

string executeEnd (TemplateCompiler $compiler)

executeStart() is called for the opening template tag ({function param=’value’})
and executeEnd() is called for the closing template tag ({/function}).

The return value is the respective PHP-Code written in the compiled template file.

The parameters of the opening tag are only available as an associative array in the
method executeStart().

An example for implementation you can find in 6.18 on page 47.

11in the file wcf/lib/system/template/TemplatePluginCompiler.class.php

44

6.6. Expanding the template system

Programm 6.16 concat Modifier

<?php

// imports

if (! defined(’NO_IMPORTS ’)) {

require_once(WCF_DIR.’lib/system/exception/SystemException.class.php ’);

require_once(WCF_DIR.’lib/system/template/TemplatePluginModifier.class.php ’);

require_once(WCF_DIR.’lib/system/template/Template.class.php ’);

}

/**

* The ’concat ’ modifier returns the string that

* results from concatenating the arguments.

* May have two or more arguments.

*

* Usage:

* "left"| concat:$right

*

* @package com.woltlab.wcf.system.template.plugin

* @author Marcel Werk

* @copyright 2001 -2007 WoltLab GmbH

* @license GNU Lesser General Public License

* <http :// opensource.org/licenses/lgpl -license.php >

*/

class TemplatePluginModifierConcat implements TemplatePluginModifier {

/**

* @see TemplatePluginModifier :: execute ()

*/

public function execute($tagArgs , Template $tplObj) {

if (count($tagArgs) < 2) {

throw new SystemException (" concat modifier needs two

or more arguments", 12001);

}

$result = ’’;

foreach ($tagArgs as $arg) {

$result .= $arg;

}

return $result;

}

}

?>

45

6. The template system

Programm 6.17 lang Prefilter

<?php

// imports

if (! defined(’NO_IMPORTS ’)) {

require_once(WCF_DIR . ’lib/system/template/TemplatePluginPrefilter.class.php ’);

require_once(WCF_DIR . ’lib/system/template/TemplateCompiler.class.php ’);

}

/**

* The ’lang ’ prefilter compiles static language variables.

* Dynamic language variables will catched by the ’lang ’ compiler function.

* It is recommended to use static language variables.

*

* Usage:

* {lang}foo{/lang}

* {lang}lang.foo.bar{/lang}

*

* @package com.woltlab.wcf.system.template.plugin

* @author Marcel Werk

* @copyright 2001 -2007 WoltLab GmbH

* @license GNU Lesser General Public License

* <http :// opensource.org/licenses/lgpl -license.php >

*/

class TemplatePluginPrefilterLang implements TemplatePluginPrefilter {

/**

* @see TemplatePluginPrefilter :: execute ()

*/

public function execute($sourceContent , TemplateCompiler $compiler) {

$ldq = preg_quote($compiler ->getLeftDelimiter (), ’~’);

$rdq = preg_quote($compiler ->getRightDelimiter (), ’~’);

$sourceContent = preg_replace ("~{ $ldq}lang{$rdq }([\w\.]+){ $ldq}/lang{$rdq}~e",

’WCF:: getLanguage()->get(\’$1\’)’, $sourceContent);

return $sourceContent;

}

}

?>

46

6.6. Expanding the template system

Programm 6.18 lang Compiler Funktion

<?php

// imports

if (! defined(’NO_IMPORTS ’)) {

require_once(WCF_DIR.’lib/system/template/TemplatePluginCompiler.class.php ’);

require_once(WCF_DIR.’lib/system/template/TemplateCompiler.class.php ’);

}

/**

* The ’lang ’ compiler function compiles dynamic language variables.

* Warning: a dynamic language variable does not support template scripting.

*

* Usage:

* {lang}$blah{/lang}

* {lang var=$x}foo{/lang}

*

* @package com.woltlab.wcf.system.template.plugin

* @author Marcel Werk

* @copyright 2001 -2007 WoltLab GmbH

* @license GNU Lesser General Public License

* <http :// opensource.org/licenses/lgpl -license.php >

*/

class TemplatePluginCompilerLang implements TemplatePluginCompiler {

/**

* @see TemplatePluginCompiler :: executeStart ()

*/

public function executeStart($tagArgs , TemplateCompiler $compiler) {

$compiler ->pushTag(’lang ’);

$newTagArgs = array ();

foreach ($tagArgs as $key => $arg) {

$newTagArgs[’$’.$key] = ’StringUtil :: encodeHTML (’.$arg.’)’;

}

$tagArgs = $compiler ->makeArgString($newTagArgs);

return "<?php \$this ->tagStack [] = array(’lang ’, array($tagArgs));

ob_start (); ?>";

}

/**

* @see TemplatePluginCompiler :: executeEnd ()

*/

public function executeEnd(TemplateCompiler $compiler) {

$compiler ->popTag(’lang ’);

$hash = StringUtil :: getRandomID ();

return "<?php \$_lang ".$hash." = ob_get_contents (); ob_end_clean ();

echo WCF:: getLanguage()->get(\ $_lang ".

$hash.", \$this ->tagStack[count(\$this ->tagStack) - 1][1]);

array_pop (\$this ->tagStack); ?>";

}

}

?>

47

7. Language administration

The WCF offers a comprehensive language administration that makes it possible to de-
velop user interfaces for applications indepently of a certain language. In the templates,
placeholders (so-called language variables) are used that can then be replaced by the
system with the corresponding sentence or word.

7.1. Fundamentals

For a better overview, language variables are divided into categories. Language variables
and categories are started in language files (xml). These are allocated to a package and
written into the database by the language administration of the WCF during the package
installation.

To achieve optimal performance during the use of language variables, the variables are
automatically converted to a quickly readable format by the system and started as a lan-
guage file (php) in the language-folder within the WCF directory. For every language,
every package and every language category, a separate language file is created. The file
name for the language file composes as follows: packageID_languageID_languageCategory.php.
A file is only created for language variables, that also contain language variables in the
respective language and the respective package. Language files are only generated for
packages that are standalone applications. All other packages do not have an own inter-
face and cannot directly access language files.

7.2. Use of language variables

The following characters can be used for the description of language variables and cat-
egories: “a-zA-Z0-9 -”. Like with package names, the use of certain namespaces is
recommended, e.g. “wcf.acp.global”. Categories can only consist of a maximum of three
blocks, separated by dots. By means of the namespace “acp” it is now easy to identify
all the variables that only occur in the admin-area.

Note: Please pay attention to the fact that the name of a language variable needs to
begin with the name of the related category, e.g. “wcf.acp.global.variable”.

48

7.3. Construction of language files

Within a template, the language variables are then embedded in the following way:
{lang}wcf.global.acp.variable{/lang}. To use a language variable directly in a
PHP-file, please use the method get("name.of.variable") of the class Language. As
an optional paramter, you can pass the method an associative array with values that
can be used within the language variable - as you can see in example 7.1 Please be aware
that the keys of the array contain the $-character.

Programm 7.1 Example of the use of the method Language::get()

// Program code

$value = 3;

WCF:: getLanguage()->get(’name.of.the.language.variable ’, array(’$value ’ => $value);

...

// language.xml

<item name="name.of.the.language.variable">

<![CDATA[A triangle has { $value } corners]]>

</item >

If the system does not find any content matching the variable, only the name of the
language variable is output. To insert the variable with the correct contents, the package
needs to provide the language variables. Language variables are saved in language files.

7.3. Construction of language files

For every language, a separate file is created, as exemplified in program 7.2.

Programm 7.2 Examplary construction of an English language file

<?xml version ="1.0" encoding ="UTF -8"?>

<!DOCTYPE language SYSTEM "http ://www.woltlab.com/DTDs/language.dtd">

<language languagecode ="en">

<category name=" example.category.name">

<item name=" example.category.name.var1"><![CDATA[example content]]></item >

<item name=" example.category.name.var2"><![CDATA[example content]]></item >

...

</category >

...

</language >

From the first line of the example it can be established that the language files are
started in XML-Format and with UTF8-coding. The WCF also supports other character
encodings and also transforms UTF-8-characters into another encoding, if required. The
root element of this XML-file is <language>. The attribute languagecode defines a
language code for the recognition of the respective language. For the naming convention,
the ISO 639-1-Standard1 is assumed as a prerequisite.

1http://en.wikipedia.org/wiki/ISO_639

49

http://en.wikipedia.org/wiki/ISO_639

7. Language administration

Within <language>, the categories will then be created. The tag <category> contains
the attribute name, which specifies the name of the language category. Child elements
of <category> are the language variable with the <item> tag. In this case, too, name
contains the name of the language variables.

Within item, the content of the language variables are specified in a CDATA2-block.
Template scripting and HTML can be inserted here to solve grammatical problems,
facilitate the output of certain values or perform certain formattings.

Warning: Do not use template scripting in variables that you call up directly in a
PHP-file: $language->get("name.of.the.language.variable")

In program 7.3 you can see an output that is required in a poll. If nobody has voted
yet, “no votes yet” will be output. If there has been one or more votes, the text “Total
x votes” is output. Instead of “x”, the current counter reading is output. Furthermore,
you can also see how an additional if-condition is employed to distinguish between the
singular and the plural of the word “vote”.

Programm 7.3 Example of template scripting in language variables

<item name="wcf.poll.votes">

<![CDATA[

{if $poll ->votes == 0}

No votes yet

{else}

Total {#$poll ->votes} Vote{if $poll ->votes > 1}s{/ if}

{/if}

]]>

</item >

Detailed information on template scripting you can find in chapter 6 on page 25.

7.4. Embedding language files

After creating a language file, this can now be allocated to a package. In the package.xml,
reference the language file within the <instructions>-block, as seen in program 7.4 on
the facing page on the next page. Here, an English language file with the name of en.xml
is integrated during the installation.

Further information on the topic of Languages-PIP you can find in chapter 13.2.16 on
page 86.

2http://en.wikipedia.org/wiki/CDATA

50

http://en.wikipedia.org/wiki/CDATA

7.4. Embedding language files

Programm 7.4 Integration of an English language file in the package.xml

...

<instructions type=" install">

...

<languages languagecode ="en">en.xml </languages >

...

</instructions >

...

51

8. Events

The WCF includes its own event system to facilitate the intervention into the program
flow at elementary positions. In that way, individual changes can be brought about
without having to modify the original source code files. Events in this case are events
that happen during the program flow – e. g. the sending of a form. With a custom
EventListener, custom methods can be called at this point.

8.1. Triggering events

Events are triggered by the static method fireAction() of the EventHandler-class.
Two parameters are passed to the method:

$eventObj The object where the event was triggered.

$eventName The name of the event.

In order to be able to use the event, one needs to know first when the event will be
triggered. A list of all the events in the WCF you can find in the appendix, 15 on
page 99.

8.2. Using events

Now, a custom EventListener can be written. For this, the interface of the same name
and its method execute() need to be implemented. Three parameters are passed by
the system in the process:

$eventObj The object where the event was triggered.

$className The name of the class of the event-object.

$eventName The name of the event.

Within the method you can now define what is supposed to happen in the case of the
events. After having written an EventListener, you need to register it in the system.
For this, use the EventListener-PIP, which is explained in chapter 13.2.1 on page 70.

52

9. Sessions

The session1 system of the WCF provides an easy way of providing and saving session
data.

The class WCF calls the method initSession() with every page view. In the process,
a Session instance is retrieved from the CookieSessionFactory. The terms Session-
Factory and Session are illustrated further below.

9.1. SessionFactory

A SessionFactory exists to create a Session or retrieve it from the database respec-
tively. Through this class, the sessionlink is merely supported. That means that the
Session is retrieved on the basis of the URL. Throughout the whole administrative area,
a Session adjustment only happens due to the sessionlink.

The CookieSessionFactory extends the SessionFactory by the option of identifying
the active Session with the help of a cookie. Thus, users can automatically be recognized
by the system when returning to the page after several days.

To use a custom SessionFactory, the initSession()-method of the WCF-class needs
to be overwritten.

9.2. Session

The Session-object contains all important (user-)data of a session. Within the object,
by default the user agent is used to verify whether it really is the same user. It is also
possible to check the IP-address, however this version is not activated by default, because
many providers give out changing IP-addresses.

The CookieSession extends the Session-class by the function of saving the session
agent in the cookie. In that way, visitors returning to the website can be automati-
cally recognized. In the standalone application Burning Board, the CookieSession is
additionally extended by an own WBBSession that provides particular information only

1http://en.wikipedia.org/wiki/Session_(computer_science)

53

http://en.wikipedia.org/wiki/Session_(computer_science)

9. Sessions

used by the forum system. Thus, there are for example an own textttWBBUser- and a
WBBGuestSession, because some data does not exist at all for guests of the forum.

To be able to temporarily use data in a session, the session variables need to be used:

void register (string $key, string $data) Use this method to assign a value
($data) to a key ($key).

void unregister (string $key) To remove a value from a Session, call the unregister()-
method using the corresponding key.

array getVars () This method returns all the variables saved in an associative ar-
ray.

mixed getVar (string $name) To receive a single variable from the session, please
use this method, passing the key with which the variable was saved.

54

10. Caching

A special feature of the WCF is the included caching-system. With this a database
can be relieved. Other web technologies such as JEE1 work with a so-called application
scope, in which data can be deposited that needs to be available throughout the entire
application. Those are often components of an application that are rarely changed, but
often used. For PHP-applications, there is no application scope. For this reason, the
WCF offers its own caching-system which helps to buffer the files. To use the system,
the interface CacheBuilder and its method getData() need to be implemented. This
method returns an arbitrary value that is serialized and saved in a file in the data system.
The lacking type reliability of PHP is utilized here. A user-defined type can be returned
– an object, an array or a primitive data type. Within the method, a more complex
database query is normally executed. An exemplary CacheBuilder is illustrated in
program 10.1.

Programm 10.1 Example of a custom CacheBuilder

class CacheBuilderTest implements CacheBuilder {

/**

* @see CacheBuilder :: getData ()

*/

public function getData($cacheResource) {

$data = array ();

// get data from DB

$sql = "SELECT *

FROM test";

$result = WCF::getDB()->sendQuery($sql);

while ($row = WCF::getDB()->fetchArray($result)) {

$data []= $row;

}

return $data;

}

}

In order to use a prepared CacheBuilder, it needs to be registered in the system. Sub-
sequently, files can be enquired from the cache, as can be seen in progam 10.2 on the
next page on the next page:

Through the static method getCache(), the global cache-object of the system can be
accessed. First of all, a cache-Resource is created. The method addResource() expects
three parameters:

1http://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition

55

http://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition

10. Caching

Programm 10.2 Example of the use of the CacheBuilder

WCF:: getCache()->addResource(

’test -’.PACKAGE_ID ,

WCF_DIR.’cache/cache.test -’. PACKAGE_ID .’.php ’,

WCF_DIR.’lib/system/cache/CacheBuilderTest.class.php ’);

$this ->testData = WCF:: getCache()->get(’test -’. PACKAGE_ID);

1. Name of the Cache-Resource – the Package-ID of the standalone application should
be used here .

2. Path to the cache-file that is stored on the data system – in this example a file is
stored in the cache-folder of the WCF-directory.

3. Path to the CacheBuilder-class.

In the second command of the code-example, the saved files are retrieved from the
cache-file through the method get("name of the Cache-Resource").

To create a new cache or to reset, the cache-file needs to be deleted. At the next call,
a new cache is automatically created. A cache-resource is deleted with the following
code:

WCF::getCache()->clearResource(’Name of the Cache’);

WCF::getCache()->clear(WCF_DIR . ’cache/’, ’cache.Name.php’);

56

11. RequestHandler & the page-,
form- and action-classes

Internet applications are controlled through requests to the server. Here, the RequestHandler
offers a uniform gateway for the processing and control of HTTP-requests.

11.1. RequestHandler

The RequestHandler can be used via its static method handle(). This excepts as
the only parameter an array with path designations to the directories of the respec-
tive libraries. In this case, this means the lib-directory of the WCF and of the re-
spective standalone application. When executing the method, the system checks the
HTTP-request for POST- or GET-variables and opens or processes the corresponding
site respectively.

There are three different types of sites:

Page Simple sites in the WCF that are needed for the dump of information.

Form Special blank sites, into which data can be entried and processed.

Action For the execution of actions, without the display of a resulting information- or
blank site.

A possible URL would for example be: “.../index.php?page=Test”. The RequestHandler
will now try to create an object of the class TestPage. For the link “.../index.php?
form=Test”, the class TestForm would be searched for. Within this class, further pa-
rameters can then be processed.

For these types of sites, the WCF offers an interface and a standard implementation
within an abstract class each.

Note: It is important that you keep to the naming scheme used in the WCF when
naming your classes: Class names have to being with a capital letter, followed by the
type of class (page, form or action).

57

.../index.php?page=Test
.../index.php?form=Test
.../index.php?form=Test

11. RequestHandler & the page-, form- and action-classes

11.2. Page and AbstractPage

The Page-Interface defines the following methods:

readParameters() The POST- and GET-Parameters are read out.

readData() Files needed for the display of the site are readout or assembled respectively.

assignVariables() Variables that are meant to be used in the template, are to be passed
on to the Template-Engine.

show() The site is displayed.

AbstractPage is the standard implentation of the Page interface. With all four methods,
the corresponding event is triggered. When deriving the class, bear in mind that when
overwriting a method, either the event itself is triggered or the parent method is called
up, as can bee seen in program example 11.1. In addition to this, two variables are
passed to the template-engine. These can then be used in the template test.tpl.

Programm 11.1 Derivation of AbstractPage

class TestPage extends AbstractPage {

public $templateName = ’test ’;

/**

* @see Page:: assignVariables ()

*/

public function assignVariables () {

parent :: assignVariables ();

WCF:: getTPL()->assign(array(

’test ’ => "first testVar",

’test2 ’ => "second testVar"

));

}

}

The class AbstractPage is a good start for the realization of simple sites. It is recom-
mended to take another close look at this class prior using it. Other abstract classes
such as MultipleLinkPage and SortablePage can be used for more complex sites.

11.3. Form and AbstractForm

The Form interface expands the page interface by the follow methods:

submit() On the sending of the form, this method is called.

validate() Entries into the blank can be validated.

save() This method is used for the saving of form data.

58

11.4. Action and AbstractAction

readFormParameters() To read the form entries.

Here, too, an abstract class AbstractForm exists that should be used for the form
pages.

11.4. Action and AbstractAction

To process user entries without displaying own result- or form-pages, the interface Action
should be used. The following methods are defined:

readParameters() On the sending of the form, this method is called.

execute() The action is executed.

Furthermore, the abstract class AbstractAction defines the method executed(), for
the methods that are to be carried out after an action. However, this needs to be called
manually, whereas the methods readParameters() and execute() are automatically
called when an instance is written.

59

Part II.

Create packages

60

12. WCF-packages

In this chapter you will find information on how to create your custom package in the
WCF. This covers the format, the special characteristics of the package.xml-file and
the different package types.

12.1. The format

Packages are .tar (or .tar.gz) archives, that always contain an XML file called package.xml

and, depending on the package, other additional files.

+ paket.tar

| ...

| package.xml

| ...

| ...

Recommended software:

• tar & gzip (or e.g. 7Zip)

• an XML-Editor

12.2. The package.xml file

The package.xml-file needs to be located in the main folder in the .tar-archiv – moving
the file into a subfolder is not possible.

The package.xml contains meta-information on the package as well as instructions for
installation and the update of earlier version. Table 12.1 on page 63 shows all required
and possible XML-tags in the package.xml-file.

61

12. WCF-packages

12.2.1. The package identifier

The package identifier is a unique name used to identify the package. The WCF is
geared to Java package names in that respect. To verify the package identifier, the
method Package::isValidPackageName() is used.

Important:

A valid package identifier consists of at least three parts, which need to be separated by
a dot (.) respectively. Every part has to consist at least of an alphanumerical1 character
or the underscore (). Names can also be separated into more than three parts, e.g.
”‘com.woltlab.wcf”’.

12.2.2. Multilingual package names and package descriptions

To deliver a package in multiple languages in a single file, the package name as well
as the description of the package in the package.xml-file can be defined for multiple
languages. For the tags <packagename> and <packagedescription> there exists there-
fore the parameter language, which contains the language code according to the ISO
639-1-Standard2.

Programm 12.1 Example of multiple package names

<package name="com.woltlab.wcf.data.page.legalNotice">

<packageinformation >

<packagename >Legal Notice Page </ packagename >

<packagedescription ></packagedescription >

<packagename language ="de">imprint </ packagename >

<packagedescription language ="de">Commercial German internet pages need to include a disclaimer according to section 5 of the German Telemedia Act.</packagedescription >

...

</packageinformation >

...

</package >

12.2.3. <requiredpackage> Tag

To highlight the dependencies of one package on other packages, there is the tag <requiredpackage>.
This refers to the package identifier of the package needed. That package must be in-
stalled before the current package can be installed.

Through the optional parameter minversion you can define a minimal version of the
package, that needs to be installed at the least.

1a to z, A to Z or 0 to 9
2http://en.wikipedia.org/wiki/ISO_639

62

http://en.wikipedia.org/wiki/ISO_639

12.2. The package.xml file

Tag Parameter Impact

<package> yes, see
12.2.1

· <packageinformation> – contains meta-information on the
package

· · <packagename> yes, see
12.2.2

name of the package

· · <packagedescription>*a yes, see
12.2.2

short description of the package

· · <version> – package version numberb

· · <date>* – release date of this versionc

· · <isunique>* – Can this package only be installed
once (0 or 1)?

· · <standalone>* – Is this package a standalone appli-
cationd (0 or 1)?

· · <plugin>* – name of the superordinate pack-
age

· · <packageurl>* – Website of the package with fur-
ther information

· <authorinformation>* – contains meta-information on the
package producer

· · <author>* – author’s name
· · <authorurl>* – author’s website
· <requiredpackages>* – contains a list of packages re-

quired by this package
· · <requiredpackage>* yes, see

12.2.3
name of the required package e

· <optionalpackages>* – contains a list of packages that can
be optionally installed with this
package

· · <optionalpackage>* yes, see
12.2.4

name of the optional package

· <instructions>* yes, see
12.2.5

of instructions for the installa-
tion or the update of the pack-
age. The distinction between
installation and update is made
through parameters(see 12.2.5).
Within the <instructions> tag,
so-called PackageInstallationPlu-
gins are called.

atags marked with asterisk (*) are optional
bIt is recommended to use version numbers split into three parts: X.Y.Z. Appendices such as “Alpha

N”, “Beta N”, “RC N” are also possible. See also PHP function monoversion compare, http://www.
php.net/manual/en/function.version-compare.php

cEnglish format, compatiable with the PHP function strtotime (http://www.php.net/manual/en/
function.strtotime.php), e. g. YYYY-MM-DD

dsee 12.3 on package types
ethe optional declaration of a minimal version and the reference to the included package file are possible

through parameters, see also 12.2.3.

Table 12.1.: Tags in the package.xml file

63

http://www.php.net/manual/en/function.version-compare.php
http://www.php.net/manual/en/function.version-compare.php
http://www.php.net/manual/en/function.strtotime.php
http://www.php.net/manual/en/function.strtotime.php

12. WCF-packages

To stop the installation from canceling when a required package is not yet installed, the
location of the package file can also be directly defined by the file parameter. This can
be an URL (http or ftp) or a relative path referring to a package file within the current
package file. The required package will then be automatically downloaded or unpacked
and installed from the current package file respectively.

See some tangible examples in table 12.2.

Programm 12.2 List of required packages

<requiredpackages >

<requiredpackage minversion ="1.0.0" file=" requirements/com.woltlab.wcf.tar">

com.woltlab.wcf

</requiredpackage >

<requiredpackage minversion ="1.0.0" file=" requirements/com.woltlab.wcf.data.page.tar">

com.woltlab.wcf.data.page

</requiredpackage >

</requiredpackages >

...

<requiredpackages >

<requiredpackage minversion ="1.0.0" file="http :// server.com/paket.tar.gz">

package

</requiredpackage >

</requiredpackages >

12.2.4. <optionalpackage> Tag

Modelled on the <requiredpackage>-Tag, see 12.2.3

12.2.5. Instructions for installation and updates

The tag <instructions> contains a list of instructions for the installation or the update
of a package. Via the parameter type, the distinction is made between installation and
update: type=’install’ or type=’update’ respectively.

In the case of an update, the required parameter fromversion needs to be used to
determine the versions that can be updated. In the designation of fromversion, space-
holders (*) are therefore allowed too to allow update of a whole series of programs: e.g.
fromversion=’3.0.0 RC 1’, fromversion=’1.1.*’, fromversion=’*’.

Within the <instructions>-tags, the single PIPs3 are then referred to. There are PIPs
for the installation of files (<files>files.tar</files>), the installation of templates
(<templates>templates.tar</templates>) or for the execution of SQL-commands
(<sql>install.sql</sql>) as well as many more. You will learn more about PIPs
in the following chapter.

3PackageInstallationsPlugins

64

12.3. Different package types

12.3. Different package types

The package system differentiates between three types of packages.

Package The standard type. Files of these packages are installed into the WCF-
directory. A package normally provides program libraries that can then be uses by
standalone applications.

Standalone Application A standalone application is an independent appliaction based
on the WCF. During the installation, the user needs to define a separate installation
folder.

Plug-in A plugin is a package that is tied to an existing package and delivers additional
functions or extensions for this packages. For the creation of the plugin it is
sufficient to specify the name of the related package through the <plugin> tag in
the package.xml. Compare table 12.1 on page 63.

65

13. Package Installation Plugin

A Package Installation Plugin, short PIP, is a plugin that can extend the installation
process of packages by new functions. A PIP can then for example access a package
archive, extract files, parse XML-files and write data into the database. The possibilities
are manifold. In the process, the PIP is responsible for the installation as well as the de-
installation of its files (for this, the PIP needs to“log”the changes made, if applicable).

A PIP is mapped onto a corresponding PHP-class, that implements the interface Package-InstallationPlugin.
Within the <instruction>-block of the package.xml, a PIP is called through an XML-
code in the form of <pip>file</pip>. I.e. there is always a reference to the file that
the PIP is then supposed to engage with. If the file is not located in the main directory
of the package, the path should be specified relatively.

In the following, all PIP are introduced that are included in the WCF or the free packages.
For a better overview, they have been divided into three categories: file-based PIPs,
Import-PIPs (XML) and Other PIPs. In the following, there is also an explanation of
how to realize custom PIPs.

13.1. File-based PIPs

For File-based PIPs, an installation of files always takes place, which are then saved in
a Tar-archive.

13.1.1. The Files-PIP

Purpose

The Files-PIP is used for the installation of files.

XML-Code in the package.xml

<files>files.tar</files>

66

13.1. File-based PIPs

Mode of operation

The folder structure within the archive is copied completely into the installation direc-
tory. End application files or their plugins are copied into the directory of the end applica-
tion. For other packages, the WCF-directory is the target destination. For every file, the
installation is recorded in the database. In the table wcf_package_installation_file_log,
the file name and the package ID are saved.

Note: If in the target directory a file of the same name already exists, there are two
possibilities:

1. The file was installed by a different package:
In this case, the installation is terminated. A package cannot overwrite files of a
different package.

2. The file is unknown to the system:
The user receives a security warning asking if the file should be overwritten. The
files has probably been previously copied into the folder manually.

13.1.2. The Templates-PIP

Purpose

The Templates-PIP is used for the installation of templates.

XML-Code in the package.xml

<templates>templates.tar</templates>

Mode of operation

During the package installation, the archive-file is unpacked and the contents are copied
into the designated template folder. Every standalone application has got its own tem-
plate folder, other package types use the template folder of the WCF. If template names
are duplicate, the template names are extended by the package-ID. In addition, all tem-
plate names are saved in the database together with the package-ID.

Note: Like with the Files-PIP, template names are only allowed occur once.

67

13. Package Installation Plugin

13.1.3. ACPTemplates-PIP

Purpose

The ACPTemplates-PIP is used to install the templates of the administration inter-
face.

XML-Code in the package.xml

<acptemplates>acptemplates.tar</acptemplates>

Mode of operation

See Templates-PIP 13.1.2 on the preceding page on the previous page.

13.1.4. The Style-PIP

Purpose

With the help of the Style-PIPs, it is possible to install a style with a package.

XML-Code in the package.xml

<style>style.tar</style> Through the optional parameter default="true", the style
can also be set as default during the installation.

Mode of operation

The archive-file mandatorily needs to contain a file called style.xml. Comparable
to package.xml for packages, it contains all important information on a style. An
exemplary structure of a file like this can be seen in code example 13.1 on the next page
on the following page.

While in the <general>- and <author>-block only meta-informations are given, the
<files>-block contains important information that is used during the installation of
the style.The archive images.tar contains all image files required by the style. In the
variables.xml, all values of the style variable are determined.

Note: All style variables and their possible values can be found in the appendix, in
chapter 16 on page 101.

68

13.2. Import PIPs (XML)

Programm 13.1 Exemplary structure of a style.xml

<?xml version ="1.0" encoding ="UTF -8" ?>

<!DOCTYPE style SYSTEM "http ://www.woltlab.com/DTDs/SXF/style.dtd">

<style >

<general >

<stylename ><![CDATA[WoltLab Blue Sunrise]]></stylename >

<description ><![CDATA[The WoltLab Burning Board 3 default style.]]></ description >

<version ><![CDATA [1.0.0]] > </ version >

<date ><![CDATA [2007 -07 -17]] > </date >

<image ><![CDATA[WoltLab Blue Sunrise.png]]></image >

<copyright ><![CDATA[WoltLab GmbH]]></copyright >

<license ><![CDATA[Commercial]]></license >

</general >

<author >

<authorname ><![CDATA[Arian Glander , Harald Szekely]]></authorname >

<authorurl ><![CDATA[http ://www.woltlab.com/]]></authorurl >

</author >

<files >

<variables >variables.xml </variables >

<images >images.tar </images >

</files >

</style >

13.1.5. The PIPs-PIP

Purpose

The PackageInstallationPlugins-PIP is used for the installation of PIPs. Like this, the
system can be expanded by new PIPs.

XML-Code in the package.xml

<packageinstallationplugins>pip.tar</packageinstallationplugins>

Mode of operation

During the installation, the archive file is unpacked and the individual PIPs are copied
into the folder wcf/lib/acp/package/plugin. In addition, the PIPs are registered in
the database, together with the package-ID.

13.2. Import PIPs (XML)

The PIPs listed here all have got one thing in common: All are based on XML-files,
whose informations are to be entered in the database – i.e. imported. The structure of
such an XML-file is often very similar and is exemplified in program 13.2 on the next
page.

69

13. Package Installation Plugin

Programm 13.2 Exemplary structure of an Import PIP XML-file

<?xml version ="1.0"? >

<!DOCTYPE data SYSTEM "http ://www.woltlab.com/DTDs/custom.dtd">

<data >

<import >

<custom >

...

</custom >

...

</import >

</data >

The starting XML-tag is followed by the specification of the doctype with reference to
the corresponding DTD. The root tag <data> includes all other tags. In this <import>-
tag follows, which contains the single elements that are to be imported. These differ
from PIP to PIP. For some PIPs, after the <import>-tag, a <delete>-tag can also be
specified to delete certain files again. This is also separately so pointed out for the
respective PIPs.

13.2.1. The EventListener-PIP

Purpose

The EventListener-PIP is used to register the EventListener with the system.

XML-Code in the package.xml

<eventlistener>eventlistener.xml</eventlistener>

Tags and their meaning

<eventlistener> Defines the EventListener that is to be installed.

· <eventclassname> Name of the class that triggers the event.

· <eventname> Name of the event.

· <listenerclassfile> relative path designation for the EventListener-class. After
convention, these are stored in the folder lib/system/event/listener. For the
installation of this file, use the Files-PIP.

· <environment> If the event happens inside the administration range, “admin” is
entered here. Otherwise, please enter “user”. This is the default value, so this tag
can also be omitted in this case.

70

13.2. Import PIPs (XML)

· <inherit> If the EventListener is also supposed to be called at classes that are
inherited from the class specified in the <eventclassname>-tag, enter the value 1
here. Otherwise, enter 0 or leave the tag blank. Note: The inheritance uses up
additional calculating time. Please only use this function if really necessary.

Code example

Programm 13.3 Exemplary structure of an eventlistener.xml

<?xml version ="1.0"? >

<!DOCTYPE data SYSTEM "http ://www.woltlab.com/DTDs/eventListeners.dtd">

<data >

<import >

<eventlistener >

<eventClassName >URLParser </ eventClassName >

<eventName >didParse </eventName >

<listenerClassFile >

lib/system/event/listener/URLParserThreadURLListener.class.php

</listenerClassFile >

</eventlistener >

<!-- admin -->

<eventlistener >

<eventClassName >UserListPage </ eventClassName >

<eventName >assignVariables </eventName >

<environment >admin </ environment >

<listenerClassFile >

lib/system/event/listener/UserListPagePermissionsButtonListener.class.php

</listenerClassFile >

</eventlistener >

...

</import >

</data >

13.2.2. The Cronjobs-PIP

Purpose

The Cronjobs-PIP is used to register Cronjobs with the system. Cronjobs are time-
controlled tasks known from the world of Unix. Real cronjobs are not available most
of the time as they require their own server. That is why the functionality of Cronjobs
is imitated by AJAX and PHP. Through this simulation, regular tasks can still be
executed. These tasks could include the refreshment of readouts. Often, certain readouts
are buffered (caching), because they are frequently required by users and to relieve the
database. With the help of a Cronjob, a buffer like that can for instance be update once
a day.

71

13. Package Installation Plugin

XML-Code in the package.xml

<cronjobs>cronjobs.xml</cronjobs>

Mode of operation

Your custom Cronjob can be written by implementing the Cronjob-Interface and its
execute()-method. Within the method, any desired action can be activated. To use
the compiled Cronjob-class, it needs to be entered through the administration area of the
WCF or installed via the PIP described here. The system manages all entered Conjobs
and automatically runs the corresponding cronjob when its turn comes around. Here,
more complex operations can also be conducted. The user who initiates the Cronjob
by calling the page, does not notice any of this, because through the use of AJAX, the
whole operation runs asynchronously in the background.

Tags and their meaning

<cronjob> Contains the tags described below.

· <classpath> Path specification of the PHP-file that contains the corresponding class
to be executed. The specification needs to be relative to the installation directory
of the selected end application.

· <description> A short description of the Cronjob’s task.

· <startminute> At these minutes (0 - 59) the task is to be carried out, otherwise
please enter the *-symbol.

· <starthour> At these hours (0 - 23) the task is to be carried out, otherwise please
enter the *-symbol.

· <startdom> On these days of the month (1 - 31) the task is to be carried out,
otherwise please enter the *-symbol.

· <startmonth> In these months (1 - 12 or jan - dec) the task is to be carried out,
otherwise please enter the *-symbol.

· <startdow> On these days of the week (0 - 6 with Sunday = 0 or mon - sun) the
task is to be carried out, otherwise please enter the *-symbol.

· <execmultiple> Multiple execution (0 - no, 1 - yes): through the activation of this
option, the task is executed multiple times, if there are additional execution dates
between the last execution date and the current date.

· <canbeedited> Can this Cronjob be edited later through the ACP (0 - no, 1 - yes).

72

13.2. Import PIPs (XML)

· <canbedisabled> Can this Cronjob be deactivated later through the ACP (0 - no,
1 - yes).

Code example

Programm 13.4 Exemplary structure of a cronjobs.xml

<?xml version ="1.0"? >

<!DOCTYPE data SYSTEM "http ://www.woltlab.com/DTDs/cronjobs.dtd">

<data >

<import >

<cronjob >

<classpath >lib/system/cronjob/CleanupCronjob.class.php </classpath >

<description >Hourly Cleanup </ description >

<startminute >0</ startminute >

<starthour >*</starthour >

<startdom >*</startdom >

<startmonth >*</startmonth >

<startdow >*</startdow >

<execmultiple >0</ execmultiple >

<canbeedited >0</ canbeedited >

<canbedisabled >0</ canbedisabled >

</cronjob >

...

</import >

</data >

13.2.3. The Options-PIP

Purpose

The Options-PIP is used to define the settings options within the adminstrative inter-
face.

XML-Code in the package.xml

<options>options.xml</options>

Tags and their meaning

<categories> Contains a list of categories.

· <category> This category is used to sort the options. The tag contains the attribute
name. This specifies the name of the category.

· · <parent> Specification of the parent category’s name.

73

13. Package Installation Plugin

· · <showorder> Designation of a number defining the position of the category in
relation to other categories on the same level.

<options> Contains a list of options.

· <option> The tag contains the attribute name. This specifies the name of the option.

· · <categoryname> Specifies the name of the category to which the option is allo-
cated.

· · <optiontype> Describes the option type. For a list of available option types, please
see the appendix. It is also possible to write custom option types.

· · <showorder> Position of the option within the specified category.

· · <defaultvalue> Default value of the option.

· · <hidden> With <hidden>1</hidden>, options can be hidden. These are for ex-
ample created during the installation (e.g. date of the installation), but are on the
one hand not displayed and on the other not changeable.

· · <selectoptions> If for the options type radiobuttons or a select-type have been
selected, possible options can be speficied through this tag. Every line contains an
option structured in the way described below:
Value:Name of the language variable

Please do not format the lines with tabs or blanks, just use the line break.

· · <enableoptions> If boolean is used as an option type and you wish to create
a link to other options, use <enableoptions>. This means when this option is
activated, the options listed under <enableoptions> are also visible. Specify the
name of the respective options and separate them using commas.

· · <validationpattern> Specification of a regular expression used for the validation
of this option.

For the Options-PIP, in addition to the <import>-block, the <delete>-block can be used
to remove certain options from the system.

Code example

13.2.4. The UserOptions-PIP

Purpose

The UserOptions-PIP facilitates the creation of settings for registered users. While with
the Options-PIP the settings are later visible for the administrator in the corresponding
interface, the UserOptions-PIP defines the settings that a member can choose for his
profile.

74

13.2. Import PIPs (XML)

Programm 13.5 Exemplary structure of an options.xml

<?xml version ="1.0"? >

<!DOCTYPE data SYSTEM "http ://www.woltlab.com/DTDs/options.dtd">

<data >

<import >

<categories >

<category name=" offline"></category >

<category name=" offline.general">

<parent >offline </parent >

</category >

...

</categories >

...

<options >

<option name=" page_title">

<categoryname >general.page </ categoryname >

<optiontype >text </optiontype >

<showorder >1</showorder >

<defaultvalue >WoltLab Burning Board </ defaultvalue >

</option >

<option name=" board_default_days_prune">

<categoryname >board.threads </ categoryname >

<optiontype >select </optiontype >

<defaultvalue >1000 </ defaultvalue >

<selectoptions ><![CDATA[

1:wbb.board.filterByDate .1

3:wbb.board.filterByDate .3

7:wbb.board.filterByDate .7

]]></selectoptions >

</option >

...

</options >

</import >

<delete >

<option name=" page_title "/>

</delete >

</data >

75

13. Package Installation Plugin

XML-Code in the package.xml

<useroptions>useroptions.xml</useroptions>

Tags and their meaning

Within the XML-file, all tags can be used that have also been explained for the Options-
PIP. Additionally, the following tags are also available:

<categories> see Options-PIP.

· <category> see Options-PIP.

· · <menuicon> Specification of a path to an icon-file (preferably S-size) to be used
for the menu entry.

· · <icon> Specification of a path to an icon, which is to be used for the visual iden-
tification of the category (preferably M-Size).

<options> see Options-PIP.

· <option> see Options-PIP.

· · <outputclass> Specification of the name of a class that is to be used for the sub-
sequent output of this option.

· · <searchable> With <searchable>1</searchable> it can be defined if the speci-
fication is also supposed to be searched in a member search.

· · <visible> Specification of the group-ID of a user group that can view this option
by default. For other groups, it is hidden.

· · <editable> Specification of the group-ID of a user group that can edit this option
by default.

13.2.5. The GroupOptions-PIP

Purpose

The GroupOptions-PIP is employed to create user rights within the system. These
can then later be adjusted for single user groups. This PIP is also very similar to the
Options-PIP.

XML-Code in the package.xml

<groupoptions>groupotions.xml</groupoptions>

76

13.2. Import PIPs (XML)

Tags and their meaning

The same specifications can be made as within the XML-file for the Options-PIP.

13.2.6. The FeedReaderSource-PIP

Purpose

The FeedReaderSource-PIP is used to register sources of RSS-Feeds in the system.

XML-Code in the package.xml

<feedsource>feedsource.xml</feedsource>

Tags and their meaning

<feedsource> Contains the attribute name which defines the name of the feed.

· <url> Specifies the URL to the feed. The example shows that a string-placeholder
(%s) is used here. This is replaced automatically by the system with the language
code of the language employed by the user. You do not need to use the placeholder.
If you do use it, do make sure that the corresponding XML-file exists.

· <cycle> specifies, how often the information from the feed is to be checked and read.
The number of seconds after which the source should be read again needs to be
specified here (e.g. after one day in the example given).

Code example

Programm 13.6 Exemplary structure of a feedsource.xml

<?xml version ="1.0"? >

<!DOCTYPE data SYSTEM "http ://www.woltlab.com/DTDs/feedsource.dtd">

<data >

<import >

<feedsource name="woltlab -news">

<url >http ://www.woltlab.com/rss_%s.xml </url >

<cycle >86400 </ cycle >

</feedsource >

...

</import >

</data >

77

13. Package Installation Plugin

13.2.7. The Help-PIP

Purpose

The Help-PIP is used to create a custom text within the help function. A help element
is comparable to a point in the table of contents of a book.

XML-Code in the package.xml

<help>help.xml</help>

Tags and their meaning

<helpitem> Has the attribute name to describe a help element.

· <showorder> Expects a number to put the elements in order.

· <parent> Specification of the name of the parent element. Like this, a hierarchical
structure of help elements can be achieved.

· <refererpattern> Within the CDATA-Block, with the help of a regular expression
you can specify for which referer-adress the corresponding help element is to be
opened. The point of this is that on clicking the help-button, the user is immedi-
ately directed to the help-page that corresponds with the current page. That way,
one or more pages can refer to a help element.

After setting up the help structure on this file, all you need to do is provide the cor-
responding content. For this, language files should be used. For every help element,
there are two language variables. For the help element board, these are the following
variables:

<item name="wcf.help.item.board">

<item name="wcf.help.item.board.description">

The first variable specifies a heading, the second contains the corresponding help text.
HTML can also be employed here. The category of the language variables is <category
name="wcf.help.item">.

78

13.2. Import PIPs (XML)

Programm 13.7 Exemplary structure of a help.xml

<?xml version ="1.0"? >

<!DOCTYPE data SYSTEM "http ://www.woltlab.com/DTDs/help.dtd">

<data >

<import >

<helpitem name="board">

<showorder >3</showorder >

</helpitem >

<helpitem name="board.index">

<parent >board </parent >

<showorder >1</showorder >

</helpitem >

...

</import >

</data >

Code example

13.2.8. The BBCodes-PIP

Purpose

The BBCodes-PIP is used to install BB-Codes in the system.

XML-Code in the package.xml

<bbcodes>bbcodes.xml</bbcodes>

Tags and their meaning

<bbcode> With the name-attribute of this tag, the name of the bbcode can be speci-
fied.

· <classname> Specification of the name of a class that deals with the processing of
the input.

· <htmlopen> The opening HTML-Tag.

· <htmlclose> The closing HTML-Tag.

· <textopen> The opening text.

· <textclose> The closing text.

· <allowedchilden> Specification of the names of BBCodes (separated by commas)
that this BBCode may contain.

· <wysiwyg> This BBCode can be only displayed in the Editor as HTML, if the array
“PHP-classname” is empty.

79

13. Package Installation Plugin

· <wysiwygicon> Specification of the file name of the icon to be used in the WYSIWYG-
Editor. The icon needs to be located in the folder icon/wsyiwyg You should add
a language variable for the icon title. Language category: “wcf.bbcode, Name
of the language variable: “wcf.bbcode.mycode.title”, with “mycode” corresponding
exactly to the entry “BBCode-Tag”.

· <attributes> Contains a list of attributes.

· · <attribute> With the parameter name, to describe the <attribute>.

· · · <html> HTML-Code of the attribute.

· · · <validationpattern> Speficitation of a regular expression required for the vali-
dation of the attribute.

· · · <required> This attribute needs to be mandatorily completed.

· · · <text> The text / the content of the attribute.

· · · <usetext> If this attribute is not completed, optionally the text content of the
BBCode can be adopted.

13.2.9. The Smilies-PIP

Purpose

The Smilies-PIP is used to install smilies in the system.

XML-Code in the package.xml

<smilies>smilies.xml</smilies>

Tags and their meaning

<smiley> The smiley-code is saved here in the attribute name, which the user will later
need to use when writing a message.

· <title> Contains the name of the smiley, which is also used for an HTML-Title- and
Alt-Tag.

· <path> Contains the path to the image file that replaces the smiley-code in the
message.

Note: Because in the XML-file, only the path to the smiley image but not the image
itself are transmitted, you need to make sure to also have the image copied into the
corresponding folder. To do this, please use the Files-PIP.

80

13.2. Import PIPs (XML)

Code example

Programm 13.8 Exemplary structure of a smilies.xml

<?xml version ="1.0"? >

<!DOCTYPE data SYSTEM "http ://www.woltlab.com/DTDs/smilies.dtd">

<data >

<import >

<smiley name =":)">

<title >smile </title >

<path >images/smilies/smile.png </path >

</smiley >

<smiley name =":(">

<title >sad </title >

<path >images/smilies/sad.png </path >

</smiley >

...

</import >

</data >

13.2.10. The SearchableMessageType-PIP

Purpose

The WCF already offers its own search function, including search form and result display.
To introduce a message system to the search engine, the SearchableMessageType-PIP
needs to be used.

XML-Code in the package.xml

<searchablemessagetypes>smt.xml</searchablemessagetypes>

Tags and their meaning

<smt> This saves the name of the message type in the attribute name.

· <classpath> A path to a class that impletments the interface SearchableMessage-

Type needs to specified.

Additionally, a language variable has to be started. The name is derived from the name
of the message type:

<item name="wcf.search.type.pm"><![CDATA[private messages]]></item>

81

13. Package Installation Plugin

Programm 13.9 Exemplary structure of a smt.xml

<?xml version ="1.0"? >

<!DOCTYPE data SYSTEM "http ://www.woltlab.com/DTDs/smt.dtd">

<data >

<import >

<smt name="pm">

<classpath >lib/data/message/pm/PMSearch.class.php </classpath >

</smt >

</import >

</data >

Code example

13.2.11. The PageLocation-PIP

Purpose

There is a page that shows which user is active where on the page. For this, a list
of places in the system is required that can be checked against the current URL. The
PageLocation-PIP is used to installed possible page locations of the user within the
system.

XML-Code in the package.xml

<pagelocation>pagelocation.xml</pagelocation>

Tags and their meaning

<pagelocation> Saves the name of the location in the attribute name.

· <classpath> Optionally, provide the path to a class that processes this URL, e.g.
to find the corresponding topic name to a threadID.

· <pattern> Contains within the CDATA-Block the regular expression for a URL This
is later checked against the current URL of the user.

The name of a page location can also be used as a language variable in this way, for
this the corresponding translations need to be manually added in a language file. If for
example your page location has the following name, please use this also as the name of
the language variable:

<pagelocation name="wbb.usersOnline.location.board"></pagelocation>

<item name="wbb.usersOnline.location.board">

<![CDATA[Forum: {$board}]]>

</item>

82

13.2. Import PIPs (XML)

Code example

Programm 13.10 Exemplary structure of a pagelocation.xml

<?xml version ="1.0"? >

<!DOCTYPE data SYSTEM "http ://www.woltlab.com/DTDs/pageLocations.dtd">

<data >

<import >

<pagelocation name="wbb.usersOnline.location.subscriptions">

<pattern ><![CDATA[index\.php\?page=Subscriptions]]></pattern >

</pagelocation >

<pagelocation name="wbb.usersOnline.location.thread">

<pattern ><![CDATA[index\.php\?page=Thread &.* threadID =(\d+)]]></pattern >

<classpath >lib/data/page/location/ThreadLocation.class.php </classpath >

</pagelocation >

...

</import >

</data >

13.2.12. The HeaderMenu-PIP

Purpose

The Header-PIP can be used to create new menu items within the main menu.

XML-Code in the package.xml

<headermenu>headermenu.xml</headermenu>

Tags and their meaning

<headermenuitem> This saves the name of the language variable in the attribute
name.This then needs to be included in the language file.

· <icon> Contains the path to an image file to be used as an icon. The icons in the
WCD are used in the main menu in M-size (24px:24px). It is recommended to
create icons of the same size for your custom menu items to ensure a consistent
appearance.

· <link> Specifies which page is to be linked with the menu item.

· <showorder> Facilitates the sorting of a menu item. The larger the number, the
further back the menu item is located.

83

13. Package Installation Plugin

Note: Since in the XML-file only the path to the icon-image and the name of the
language variable are specified, you need to ensure that the picture and the language
variable are installed in the system. For this, use the Files-PIP and the Languages-PIP.
If your menu element for example has the following names, please also use this as the
name of the language variable:

<headermenuitem name="wbb.header.menu.board"></headermenuitem>

<item name="wbb.header.menu.board"><![CDATA[board]]></item>

Code example

Programm 13.11 Exemplary structure of a headermenu.xml

<?xml version ="1.0"? >

<!DOCTYPE data SYSTEM "http ://www.woltlab.com/DTDs/headerMenu.dtd">

<data >

<import >

<headermenuitem name="wbb.header.menu.board">

<icon >icon/indexM.png </icon >

<link >index.php?page=Index </link >

<showorder >1</showorder >

</headermenuitem >

...

</import >

</data >

13.2.13. The UserCPMenu-PIP

Purpose

The UserCPMenu-PIP is used to insert new menu items in the “My profile” section.

XML-Code in the package.xml

<usercpmenu>usercpmenu.xml</usercpmenu>

Tags and their meaning

This PIP is very similar to the HeaderMenu-PIP. It has the following additional tags:

<usercpmenuitem> See HeaderMenu-PIP.

· <parent> Unlike the HeaderMenu, the UserCPMenu can be structured hierarchi-
cally. Specify the parent element with <parent>.

84

13.2. Import PIPs (XML)

· <permissions> Is used to link the page to a user right. Only if a user has the
specified right, he will be able to open the page. To specify multiple rights, just
enter them separates by a comma.

Code example

Programm 13.12 Exemplary structure of a usercpmenu.xml

<?xml version ="1.0"? >

<!DOCTYPE data SYSTEM "http ://www.woltlab.com/DTDs/userCPMenu.dtd">

<data >

<import >

<usercpmenuitem name="wcf.user.usercp.menu.link.profile">

<icon >icon/profileM.png </icon >

<link >index.php?form=UserProfileEdit </link >

<showorder >1</showorder >

</usercpmenuitem >

<usercpmenuitem name="wcf.user.usercp.menu.link.profile.email">

<icon >icon/emailS.png </icon >

<link >index.php?form=EmailChange </link >

<parent >wcf.user.usercp.menu.link.profile </parent >

<showorder >2</showorder >

<permissions >user.profile.canChangeEmail </ permissions >

</usercpmenuitem >

...

</import >

</data >

13.2.14. The ACPMenu-PIP

Purpose

The ACPMenu-PIP is used to add new menu items in the administration section.

XML-Code in the package.xml

<acpmenu>acpmenu.xml</acpmenu>

Tags and their meaning

This PIP is very similar to the HeaderMenu- and the UserCPMenu-PIP. The only dif-
ference to the UserCPMenu-PIP is the tag <acpmenuitem>, which is used instead of
<usercpmenuitem>.

85

13. Package Installation Plugin

13.2.15. The StyleAttributes-PIP

Purpose

The StyleAttributes-PIP is used to link the attributes of selected CSS-Selectors with
style variables. Like this, the application becomes independent of certain styles.

Example: In a template, you have defined an information box:

<div class="infoContainer">Informations</div>

Now, you would like this box to make use of the style system of the WCF and use an exist-
ing color as the background color. You choose the variablecontainer1.background.color.
For this, you create an StyleAttributes-PIP, as shown in Code example 13.13 on the fac-
ing page on the following page.

In this way, you have not permanently encoded a color in the system, but are style-
independent. Your information box thus conforms to the respective style. For many
elements, these links have already been created. You rarely need to create custom
links.

XML-Code in the package.xml

<styleattributes>styleattributes.xml</styleattributes>

Tags and their meaning

<attribute> The style attribute.

· <selector> Specification of a CSS-Selector1 – e.g. .class, #id or tag.

· <name> Specification of a CSS-attribute – e.g. color, border-style or width.

· <value> Name of a style variable whose value needs to be inserted here. A list of
all style variables you can find in the appendix.

Code example

13.2.16. The Languages-PIP

Purpose

The Languages-PIP is used for the installation of language files.

1http://www.w3.org/TR/REC-CSS2/selector.html

86

http://www.w3.org/TR/REC-CSS2/selector.html

13.2. Import PIPs (XML)

Programm 13.13 Exemplary structure of a styleattributes.xml

<?xml version ="1.0"? >

<!DOCTYPE data SYSTEM "http ://www.woltlab.com/DTDs/styleattributes.dtd">

<data >

<import >

<attribute >

<selector ><![CDATA[. infoContainer]]></selector >

<name ><![CDATA[background -color]]></name >

<value ><![CDATA[container1.background.color]]></value >

</attribute >

...

</import >

</data >

XML-Code in the package.xml

<languages languagecode="de">de.xml</languages> For every language installed,
a new tag is used. The parameter languagecode specifies the language code of the
respective language.

Tags and their meaning

<language> The tag contains a list of language categories (<category>). The at-
tribute languagecode expects the correct specification of the language code ac-
cording to ISO639-1-Standard2.

· <category> The tag contains a list of language variables (<item>). The attribute
name specifies the name of the language category. Categories are needed to sort
the many language variables.

Like with package names, it is recommendable to use certain name spaces, e.g.
“wcf.acp.global”. Categories can only be made up of a maximum of the blocks,
separated by a dot (.). Each part needs to consist of at least one alphanumerical
character3 or an underscore ().

· · <item> Each <item>-tag represents a custom language variable. Like with the
categories, the attribute name provides information about the name of the variable.
The name begins with the name of the language category. For the description, the
same characters as for the categories can be used.

The tag contains the content of the language variable. This should be noted within
the CDATA4-block. Furthermore, the following rules apply:

2http://en.wikipedia.org/wiki/ISO_639
3a until z, A until Z or 0 until 9
4http://en.wikipedia.org/wiki/CDATA

87

http://en.wikipedia.org/wiki/ISO_639
http://en.wikipedia.org/wiki/CDATA

13. Package Installation Plugin

Mind the coding For the coding of language files, only UTF-8 is permitted. Make
sure not to use any HTML-Entities, e.g. to write special characters. For this
rule, there are only three exceptions:

" used for "

< used for <

> used for >

Templatescripting allowed Within the language variables, templatescripting may
be used.

Mind the context When using language variables, you need to pay attention to
the context in which the variable is used. This applies to the templatescripting
as well as to HTML-Entities. These are not valid in Javascript-instructions
or e-mails. When templatescripting, you cannot fall back on variables that
are unknown within the template. When variables are used directly through
PHP, templatescripting is not permitted5.

Code example

Programm 13.14 Exemplary structure of an english language file

<?xml version ="1.0" encoding ="UTF -8"?>

<!DOCTYPE language SYSTEM "http ://www.woltlab.com/DTDs/language.dtd">

<language languagecode ="en">

<category name=" example.category.name">

<item name=" example.category.name.var1"><![CDATA[example content]]></item >

<item name=" example.category.name.var2"><![CDATA[example content]]></item >

...

</category >

...

</language >

13.3. Other PIPs

13.3.1. The SQL-PIP

Purpose

The SQL-PIP is used to execute SQL-instructions during the installation of packages.
In the typical use case, this will for example concern CREATE TABLE or ALTER TABLE

commands. However, other SQL commands can be executed this way too.

5This will be changed in later versions

88

13.3. Other PIPs

XML-Code in the package.xml

<sql>install.sql</sql>

Mode of operation

Before execution, the SQL-PIP checks if the respective commands are allowed. It is for
example prohibited for a package to delete tables or table elements of another package.

The SQL-PIP logs all commands of the following type, so they can be reversed at
deinstallation.

• CREATE TABLE

• DROP TABLE

• CREATE INDEX

• DROP INDEX

• ALTER TABLE

• RENAME TABLE

Warning: As you might have noticed, INSERT INTO, DELETE FROM and UPDATE TABLE

commands are not logged by the SQL-PIP and are therefore irreversible.

13.3.2. The Script-PIP

Purpose

The Script-PIP is used to call up non-recurring and more complex operations during the
installation.

XML-Code in the package.xml

<script>script.php</script>

Mode of operation

The call occurs within the class ScriptPackageInstallationPlugin. All variables used
there are thus also possible in the Script-file.

Note: The PHP-Script needs to be installed first through the Files-PIP.

89

13. Package Installation Plugin

13.3.3. Das TemplatePatch-PIP

Purpose

The TemplatePatch-PIP is used to modify already existing templates via plugin. For
this, a so-called Unified Diff 6 or patch is used. This patch only contains the changed
rows of the template, not the complete template.

A patch like this is created with the command line program diff 7 and the command

diff -u template.tpl.old template.tpl.

XML-Code in the package.xml

<templatepatch>patch.diff</templatepatch>

Mode of operation

The TemplatePatch-PIP tries to apply the supplied patch to the templates by search-
ing for the invidiaul parts of the patch, the so-called “hunks”. The rows that are to
be replaced and the surrounding context are then searched for (usually three rows of
context).

Use of imprecise patches This normally works without any problems. However, in
some cases it can happen the the template to be patched has already been changed by
another plugin and therefore the correct place for the change cannot be located.

In case“only”the content of the rows to be replaced cannot be found, the TemplatePatch-
PIP contains the so-called Fuzz-Faktor 8. The fuzz-factor is a natural number9 and
determines the maximum number of rows that are ignored by the TemplatePatch-PIP
when searching for the correct text passage. First, the TemplatePatch-PIP searches for
a passage where all the lines exactly match. If this passage is not found and the fuzz-
factor is equal to or larger than 1, the TemplatePatch-PIP repeats the search, this time
ignoring the first and last row of the context. If this search also fails and the fuzz-factor
is equal to or larger than 1, the TemplatePatch-PIP no ignores the first two and the last
two rows of the context in another search.

6http://en.wikipedia.org/wiki/Diff
7http://www.gnu.org/software/diffutils/ alternatively
http://sourceforge.net/projects/unxutils for Windows

8see also http://www.gnu.org/software/diffutils/manual/html_node/Inexact.html
9the numbers 1, 2, 3, . . . etc.

90

http://en.wikipedia.org/wiki/Diff
http://www.gnu.org/software/diffutils/
http://sourceforge.net/projects/unxutils
http://www.gnu.org/software/diffutils/manual/html_node/Inexact.html

13.4. Custom PIPs

Note: The default value for the fuzz-factor is 2. It does not make sense to have a fuzz-
factor larger than the size of the context (usually 3). The larger the fuzz-factor, the
bigger the danger that the TemplatePatch-PIP chooses the wrong passage to patch.

To change the default value of the fuzz-factor, change in the parameter fuzzfactor in the
package.xml in the tag <templatepatch>:
<templatepatch fuzzfactor="3">patch.diff</templatepatch>

If (independent of context) the passages to be replaced are not found, the patch cannot
be applied at all. In this case, a manual processing of the template is required.

Repatching an update If during the update of package a new version of a template
that has already been patches is delivered, the TemplatePatch-PIP automatically at-
tempts to apply the patch to the new version of the template after the update. If his
fails, a respective error message is displayed on the screen.

Note: The TemplatePatch-PIP only uses Unified Diffs, normal diffs or Context Diffs do
not work.

Note: The TemplatePatch-PIP only handles templates in the standardtemplatepack.
Modifications in custom templatepacks need to be made manually.

13.3.4. The ACPTemplatePatch-PIP

Purpose

The ACPTemplatePatch-PIP is used for the application of patches ACP-Templates.

XML-Code in the package.xml

<acptemplatepatch>patch.diff</acptemplatepatch>

Mode of operation

See TemplatePatch-PIP 13.3.3 on the preceding page.

13.4. Custom PIPs

It is possible to expand the system by your own PIPs if the existing PIPs do not cover
the desired functionality. As mentioned in the introduction of the chapter, a PIP is
mapped by a class that implements the interface PackageInstallationPlugin.

91

13. Package Installation Plugin

13.4.1. The Interface

The first step thus consists of creating a respective class that implements this interface.
Some abstract classes that will be introduced later, already relieve you of a large part
of the implementation. Firstly, the methods to be implemented are presented:

hasInstall

boolean hasInstall ()

hasInstall() Returns true, if the installation of the current plugin is supposed to
execute this plugin. A verification of the tag used is conceivable here.

install

void install ()

install() Carries out the installation of the plugin.

hasUpdate

boolean hasUpdate ()

hasUpdate() Returns true, if the update of the current package is supposed to exectute
this plugin. A verification of the tag used is conceivable here.

update

void update ()

update() Carries out the update of the plugin.

hasUninstall

boolean hasUninstall ()

hasUninstall() Returns true, if the deinstallation of the current plugin is supposed to
execute this plugin. A verification of the tag used is conceivable here.

92

13.4. Custom PIPs

uninstall

void uninstall ()

uninstall() Carries out the de-installation of the plugin.

13.4.2. Abstract classes

Since the requirements of a PackageInstallationPlugin are often similar, the WCF already
provides several abstract classes implementing some of the methods.

AbstractPackageInstallationPlugin

This is the default implementation of the interface. All six methods are implemented,
while in this case mainly the triggering of the respective events happens. The install()-
method is the only one that really needs to be overwritten to effectively implement a
new functionality.

AbstractXMLPackageInstallationPlugin

For the many XML-based PIPs this abstract class is the starting point, it expands
AbstractPackageInstallationPlugin by the following methods:

getXML XML getXML ()

getXML() reads the specified XML-Datei and saves the content in a XMLObject10 which
is returned.

getShowOrder integer getShowOrder (integer $showOrder, [string $parentName
= null], [string $columnName = null], [string $tableNameExtension = ”])

getShowOrder() Returns an showOrder-value, which determines the position of an ele-
ment within a level.

AbstractOptionPackageInstallationPlugin

This abstract class is used for the numerous Options-PIPs and in particular implements
the install()-method, in which the XML-file is perambulated and single tags are read
out. Especially important is the new abstract method saveOption():

10internal the SimpleXML The class XML is defined in wcf/lib/util/XML.class.php.

93

13. Package Installation Plugin

saveOption void saveOption (array $option, string $categoryName, [integer $ex-
istingOptionID = 0])

saves an option with the respective properties in the database. The parameter option

passes an array with values from the XML-file. categoryName indicates the name of the
respective category. If the optionID of an option is already available, this can be passed
through existingOptionID.

13.4.3. Installation of the PIP

The class now needs to be packed into a tar-archive and can be installed with the PIPs-
PIP. More on this in chapter 13.1.5 on page 69.

94

14. Standalone applications

As already mentioned in the preceding chapters, standalone applications are special
packages that provide their own graphic interfaces and are based on existing packages.
Additionally it must be mentioned that standalone applications mandatorily have their
own administrative section. Below, the individual steps are described that are necessary
to create your own standalone application based on WCF.

14.1. Creating a package

First of all, of course a respective package needs to be created. You can find more on
this in chapter 12 on page 61. In the package.xml, enter the following command in the
<packageinformation>-block for an standalone application:

<standalone>1</standalone>

Any further specifiations are optional. For the required packages, you need to specify
all packages that your standalone application depends upon.

Note: The dependency on com.woltlab.wcf only needs to be specified if the depen-
dency is tied to a specific version. Otherwise, all packages are automatically dependent
on that package.

14.2. Inheritance of the classes WCF and WCFACP

The structure of the WCF closely follows the MVC-Pattern1. Here, the class WCF (or
WCFACP respectively) corresponds to the central control unit of the application (Con-
troller). This can be used directly. However, you need to write your own inheritance of
the class, e.g. to access your own cache-resources or templates. It is recommended to
closely study the WCF-class and its method (the same goes for WCFACP).

1http://en.wikipedia.org/wiki/Model_View_Controller

95

http://en.wikipedia.org/wiki/Model_View_Controller

14. Standalone applications

14.3. Creating an IndexPage-class

The IndexPage-class is called by the RequestHandler by default if no parameters on
the URL have been provided, i.e. this is the start page of your standalone application,
or the entry page to the administrative section respectively.

Hints on the RequestHandler and the Page-interface you can find in chapter 11 on
page 57.

14.4. Creating an index.php-file

Within the index.php-file, all important data is contained and the application is initial-
ized. Some of the following commands can also be externalized to a separate file, which
then needs to be embedded again. We will dispense with this here. The following code-
example assumes that the standalone application is called com.application.test.

Programm 14.1 Example of an index.php-file

// initialize package array

$packageDirs = array ();

// include config

require_once(dirname(__FILE__).’/ config.inc.php ’);

// include WCF

require_once(RELATIVE_WCF_DIR.’global.php ’);

//

if (!count($packageDirs)) $packageDirs [] = TEST_DIR;

$packageDirs [] = WCF_DIR;

// starting test application

require_once(TEST_DIR.’lib/system/Test.class.php ’);

new Test ();

RequestHandler :: handle(ArrayUtil :: appendSuffix($packageDirs , ’lib/’));

First, the array $packageDirs is initialized. This is then used in the embedded config.inc.php-
file. The file is automatically started by the WCF and contains several constant defini-
tions. Amongst others, the path to the directory of the standalone application is saved
in an absolute term. For this, the last block is used. For com.application.test, this
would be test. The constant name then reads RELATIVE_TEST_DIR and just TEST_DIR

for the absolute path.

Note: In our example you would need to name own database tables within the install.sql-
file of this package with the prefix test1 1 .

Next, the WCF is embedded and the array $packageDirs is filled with values. On the
one hand, the path to the current standalone application is entered, on the other hand
the path to the WCF-directory. The application can now be started. The class Test is
derived from WCF.

96

14.4. Creating an index.php-file

Finally, the array $packageDirs is passed to the RequestHandler. The lib-directory is
also attached to both path specifications. This contains the actual classes in the WCF
as well as in the standalone application.

97

Part III.

Appendices

98

15. Events

15.1. Events of the free WCF-packages

Location of the Event Name of the Event

com.woltlab.wcf.data.message.bbcode
· URLParser

parse() didParse
shouldParse

com.woltlab.wcf.page.util.menu
· HeaderMenu

loadCache() loadCache
buildMenu() buildMenu

com.woltlab.acp.package.plugin
· StylePackageInstallationPlugin

uninstall() uninstall

com.woltlab.wcf.acp.form
· UserSearchForm

search() buildConditions

com.woltlab.wcf.acp.package.plugin
· AbstractPackageInstallationPlugin

construct() construct
hasInstall() hasInstall
install() install
hasUpdate() hasUpdate
update() update
hasUninstall() hasUninstall
uninstall() uninstall

com.woltlab.wcf.action
· AbstractAction

readParameters() readParameters
execute() execute
executed() executed

99

15. Events

com.woltlab.wcf.page.util.menu
· TreeMenu

loadCache() loadCache
buildMenu() buildMenu

com.woltlab.wcf.page
· AbstractForm

submit() submit
readFormParameters() readFormParameters
validate() validate
save() save
saved() saved

· AbstractPage
readParameters() readParameters
readData() readData
assignVariables() assignVariables
show() show

· MultipleLinkPage
calculateNumberOfPages() calculateNumberOfPages
countItems() countItems

· SortablePage
validateSortField() validateSortField
validateSortOrder() validateSortOrder

com.woltlab.wcf.system.auth
· UserAuth

getInstance() loadInstance

com.woltlab.wcf.system.session
· SessionFactory

get() shouldInit
didInit

com.woltlab.wcf.system.template
· Template

display() shouldDisplay
didDisplay

Table 15.1.: Events of the free WCF-packages

100

16. Style variables

This chapter describes all the variables that are permitted within the variables.xml-
file. The variables are sorted in the same order that they later need to be processed
in within the graphic interface of the administrative section. The stated default values
apply to the style ”‘WoltLab Basic”’.

Please note that values that can be specified for individual variables can differ from those
that need to be entered into the style editor.

When listing the variables, first of all the name is specified, followed by the value as used
in the ”‘WoltLab Basic”’-style. It is therefore possible that no value is specified. In square
brackets the value margin is given, which gives information on which specifications can
be made here. All values need to be specified within a CDATA-block. The specification
concluded by a short description of the variables.

16.1. Global

16.1.1. General

Display

page.alignment center [align] Allignment of the page – this command only works in
connection with the next variable.

page.alignment.margin margin-left:auto;margin-right:auto; [custom] Alignment
of the page (left: ”‘margin-left: auto; margin-right: 0”’, right: ”‘margin-left: 0;
marginright: auto”’ and centered: ”‘margin-left: auto; margin-right: auto”’).

page.width [lengths] Fixed page width (css-command width) for a static width.

page.width.max 80% [lengths] Max. page width (css-command max-width) for a flexible
width – should not be used at the same time as the static width.

page.width.min 760px [lengths] Min. page width (css-command min-width) for a flex-
ible width – should not be used at the same time as the static width.

101

16. Style variables

Saving location for graphics

global.icons.location icon/ [path] Path to the icon folder (this specification is currently
ignored)

global.images.location images/ [path] Path to the images folder (the best way is to
place your pictures in a sub-folder of images)

Favorites-Icon

global.favicon grey [favicon] Name

16.1.2. Page

Page header

page.header.background.color #777 [bcolor] Page color

page.header.height 90px [lengths] Height

page.header.background.image [burl] Background image URL

page.header.background.image.alignment [balign] Background image alignment

page.header.background.image.repeat [brepeat] Repeat background image

Logo

page.logo.image images/wbb3-header-logo.png [path] Path to the image

page.logo.image.alignment left [align] Alignment

page.logo.image.padding.top 5px [lengths] Inner padding (top)

page.logo.image.padding.right 0px [lengths] Inner padding (right)

page.logo.image.padding.left 13px [lengths] Inner padding (left)

102

16.1. Global

Global title

global.title.hide position: absolute; top: -9000px; left: -9000px; [hide] Show
global title

global.title.font [font] Font type

global.title.font.style [custom] Style (font-style) – the values normal, italic and oblique
are possible.

global.title.font.weight [custom] Style (font-weight) – the values normal and bold are
supported by all browsers.

global.title.font.size [lengths] Size

global.title.font.color [color] color

global.title.font.alignment [align] Alignment

global.title.font.padding.top [lengths] Inner padding (top)

global.title.font.padding.right [lengths] Inner padding (right)

global.title.font.padding.left [lengths] Inner padding (left)

Background

page.background.color #fff [bcolor] Background color

page.background.image [burl] Background image URL

page.background.image.attachment [bfix] Fix background image

page.background.image.alignment [balign] Background image alignment

page.background.image.repeat [brepeat] Repeat background image

16.1.3. Boxes

Box 1

container1.background.color #f7f7f7 [bcolor] Background color

container1.font.color #666 [color] Text color

container1.font.2nd.color #888 [color] Second text color

container1.link.color #666 [color] Link color

container1.link.color.hover #333 [color] Link color (hover)

103

16. Style variables

Box 2

container2.background.color #efefef [bcolor] Background color

container2.font.color #666 [color] Text color

container2.font.2nd.color #888 [color] Second text color

container2.link.color #666 [color] Link color

container2.link.color.hover #333 [color] Link color (hover)

Box 3

container3.background.color #e0e0e0 [bcolor] Background color

container3.font.color #333 [color] Text color

container3.font.2nd.color #777 [color] Second text color

container3.link.color #666 [color] Link color

container3.link.color.hover #333 [color] Link color (hover)

16.1.4. Borders

Border heads

container.head.font.color #fff [color] Text color

container.head.font.2nd.color #fff [color] Second text color

container.head.link.color #fff [color] Link color

container.head.link.color.hover #fff [color] Link color (hover)

container.head.background.color #777 [bcolor] Background color

container.head.background.image [burl] Background image URL

104

16.1. Global

Borders

container.border.outer.width 1px [lengths] Outer border width

container.border.outer.style solid [style] Outer border style

container.border.outer.color #999 [color] Outer border color

container.border.inner.color #fff [color] Inner border color

divider.width 1px [lengths] Border width (dividing line)

divider.style solid [style] Border style (dividing line)

divider.color #bbb [color] Border color (dividing line)

16.1.5. Forms

Text

input.font ’Trebuchet MS’, Arial, sans-serif [font] Font type

input.font.size .85em [lengths] Font size

input.font.color #333 [color] Font color

input.font.color.focus #000 [color] Font color (focus)

Background

input.background.color #fff [bcolor] Background color

input.background.color.focus #ffd [bcolor] Background color (focus)

Border

input.border.width 1px [lengths] Border width

input.border.style solid [style] Border style

input.border.color #999 [color] Border color

input.border.color.focus #08f [color] Border color (focus)

105

16. Style variables

16.2. Text

16.2.1. Text types

Texts

page.font ’Trebuchet MS’, Arial, sans-serif [font] Font type

page.font.size .8em [lengths] Text size

page.font.2nd.size .85em [lengths] Second text size

page.font.line.height 1.5 [lengths] Line height

page.font.color #333 [color] Text color

page.font.2nd.color #888 [color] Second text color

Heading

page.title.font ’Trebuchet MS’, Arial, sans-serif [font] Font type

page.title.font.style normal [custom] Style (font-style) – the values normal, italic and
oblique are possible.

page.title.font.weight normal [custom] Style (font-weight) – the values normal and
bold are supported by all browsers.

page.title.font.size 1.3em [lengths] Text size

page.title.font.color #333 [color] Text color

16.2.2. Links

Links

page.link.color #666 [color] Link color

page.link.color.hover #333 [color] Link color (hover)

External links

page.link.external.color #333 [color] External link color

page.link.external.color.hover #08f [color] External link color (hover)

106

16.3. Buttons

Active links

page.link.color.active #08f [color] Link color (active)

16.3. Buttons

16.3.1. Small Buttons

Labeling

buttons.small.caption.hide [hide] Show labeling of the buttons

buttons.small.caption.color #666 [color] Text color

buttons.small.caption.color.hover #333 [color] Text color (hover)

Outer border

buttons.small.border.outer.width 1px [lengths] Outer border width

buttons.small.border.outer.style solid [style] Outer border style

buttons.small.border.outer.color #999 [color] Outer border color

buttons.small.border.outer.color.hover #999 [color] Outer border color (hover)

Inner border

buttons.small.border.inner.width 1px [lengths] Inner border width

buttons.small.border.inner.style solid [style] Inner border style

buttons.small.border.inner.color #fff [color] Inner border color

buttons.small.border.inner.color.hover #fff [color] Inner border color (hover)

Background color

buttons.small.background.color #e8e8e8 [bcolor] Background color

buttons.small.background.color.hover #fff [bcolor] Background color (hover)

107

16. Style variables

Background image

buttons.small.background.image [burl] Background image URL

buttons.small.background.image.hover [burl] Background image URL (hover)

16.3.2. Large Buttons

Labeling

buttons.large.caption.hide [hide] Show labeling of the buttons

buttons.large.caption.color #fff [color] Text color

buttons.large.caption.color.hover #333 [color] Text color (hover)

Outer border

buttons.large.border.outer.width 1px [lengths] Outer border width

buttons.large.border.outer.style solid [style] Outer border style

buttons.large.border.outer.color #999 [color] Outer border color

buttons.large.border.outer.color.hover #999 [color] Outer border color (hover)

Inner border

buttons.large.border.inner.width 1px [lengths] Inner border width

buttons.large.border.inner.style solid [style] Inner border style

buttons.large.border.inner.color #fff [color] Inner border color

buttons.large.border.inner.color.hover #fff [color] Inner border color (hover)

Background color

buttons.large.background.color #777 [bcolor] Background color

buttons.large.background.color.hover #cecece [bcolor] Background color (hover)

108

16.4. Menus

Background image

buttons.large.background.image [burl] Background image URL

buttons.large.background.image.hover [burl] Background image URL (hover)

16.4. Menus

16.4.1. Main Menu

Buttons

menu.main.position text-align:left;margin:0 auto 0 0 [custom] Alignment of the
buttons (left: ”‘text-align: left; margin: 0 auto 0 0”’, right: ”‘text-align: right; mar-
gin: 0 auto 0 0”’ and centered: ”‘textalign: center; margin: 0 auto 0 auto;”’)

menu.main.bar.hide #f7f7f7 [bcolor] Background color

menu.main.bar.show #f7f7f7 [bcolor] Background color

menu.main.bar.divider.show 1px [custom] Should a dividing line be displayed (yes:
”‘1px”’ and no: ”‘0”’)

Caption

menu.main.caption.hide [hide] If the caption should not be displayed, then ”‘position:
absolute; top: -9000px; left: -9000px;”’, otherwise leave clear.

menu.main.caption.color #666 [color] Text color

menu.main.caption.color.hover #333 [color] Text color (hover)

menu.main.active.caption.color #fff [color] Text color (active)

menu.main.active.caption.color.hover #000 [color] Text color (active hover)

Background color

menu.main.background.color #efefef [bcolor] Background color

menu.main.background.color.hover #fff [bcolor] Background color (hover)

menu.main.active.background.color #777 [burl] Background color (active)

menu.main.active.background.color.hover #cecece [burl] Background color (active
hover)

109

16. Style variables

Background image

menu.main.background.image [burl] Background image URL

menu.main.background.image.hover [burl] Background image URL (hover)

16.4.2. Tabs

Caption

menu.tab.caption.color #666 [color] Text color

menu.tab.caption.color.hover #333 [color] Text color (hover)

menu.tab.active.caption.color [color] Text color (active)

menu.tab.active.caption.color.hover [color] Text color (active hover)

Background color

menu.tab.background.color #e8e8e8 [bcolor] Background color

menu.tab.background.color.hover #fff [bcolor] Background color (hover)

menu.tab.active.background.color [bcolor] Background color (active)

menu.tab.active.background.color.hover [bcolor] Background color (active hover)

Background image

menu.tab.background.image [burl] Background image URL

menu.tab.background.image.hover [burl] Background image URL (hover)

16.4.3. Tab-Buttons

Caption

menu.tab.button.caption.color #ddd [color] Text color

menu.tab.button.caption.color.hover #fff [color] Text color (hover)

menu.tab.button.active.caption.color #fff [color] Text color (active)

menu.tab.button.active.caption.color.hover #fff [color] Text color (active hover)

110

16.4. Menus

Background color

menu.tab.button.background.color [bcolor] Background color

menu.tab.button.background.color.hover #666 [bcolor] Background color (hover)

menu.tab.button.active.background.color #444 [bcolor] Background color (active)

menu.tab.button.active.background.color.hover #666 [bcolor] Background color (ac-
tive hover)

Outer border

menu.tab.button.border.style solid [style] Border style

menu.tab.button.border.color #aaa [color] Border color

menu.tab.button.border.color.hover #bbb [color] Border color (hover)

16.4.4. Table heads

Caption

table.head.caption.color #666 [color] Text color

table.head.caption.color.hover #333 [color] Text color (hover)

table.head.active.caption.color #333 [color] Text color (active)

table.head.active.caption.color.hover #333 [color] Text color (active hover)

Underline

table.head.border.bottom.style solid [style] Style

table.head.border.bottom.color #999 [color] Border color

table.head.border.bottom.color.hover #999 [color] Border color (hover)

table.head.active.border.bottom.color #08f [color] Border color (active)

table.head.active.border.bottom.color.hover #08f [color] Border color (active hover)

111

16. Style variables

Background color

table.head.background.color #cecece [bcolor] Background color

table.head.background.color.hover #e8e8e8 [bcolor] Background color (hover)

table.head.active.background.color #e8e8e8 [bcolor] Background color (active)

table.head.active.background.color.hover #efefef [bcolor] Background color (active
hover)

Background image

table.head.background.image [burl] Background image URL

table.head.background.image.hover [burl] Background image URL (hover)

16.4.5. Extras

Dropdown- & List-menus

menu.dropdown.link.color #555 [color] Text color

menu.dropdown.link.color.hover #000 [color] Text color (hover)

menu.dropdown.background.color #f7f7f7 [bcolor] Background color

menu.dropdown.background.color.hover #e0e0e0 [bcolor] Background color (hover)

menu.dropdown.background.image [burl] Background image URL

menu.dropdown.background.image.hover [burl] Background image URL (hover)

Selected Elements

selection.font.color #333 [color] Text color

selection.font.2nd.color #333 [color] Second Text color

selection.link.color #666 [color] Link color

selection.background.color #def [bcolor] Background color

selection.border.width 1px [lengths] Border width

selection.border.style solid [style] Border style

selection.border.color #08f [bcolor] Border color

112

16.5. Advanced

selection.background.image [burl] Background image URL

16.5. Advanced

16.5.1. Message display

Sidebars

messages.sidebar.alignment left [custom] Alignment(left: ”‘left”’, rechts: ”‘right”’ or
top: ”‘top”’)

messages.sidebar.text.alignment center [align] Text alignment

messages.sidebar.avatar.framed 0 [boolean] Framed view

messages.sidebar.color.cycle 0 [boolean] Alternate background color

messages.sidebar.divider.use 1 [boolean] Divider line

Message field

messages.framed 0 [boolean] Framed view

messages.color.cycle 1 [boolean] Alternate background color

messages.boxes.background.color [bcolor] Background color (boxes)

messages.boxes.font.color [color] Text color (boxes)

messages.footer.alignment right [custom] Alignment of the buttons (left: ”‘left”’ or
right: ”‘right”’)

16.5.2. Additional CSS-declarations

Additional CSS-declarations 1

user.additional.style.input1 [custom] Custom CSS-Code 1

user.additional.style.input1.use 0 [boolean] Should custom CSS-Code 1 be used

113

16. Style variables

Additional CSS-declarations 2

user.additional.style.input2 [custom] Custom CSS-Code 2

user.additional.style.input2.use 0 [boolean] Should custom CSS-Code 2 be used

16.5.3. Comments

Comments

user.comment "WoltLab Basic" [...] [custom] Comment on the style

16.6. Value margins

Within the listing of the style variables, the value margin for these specifications has
been stated. These will now be explained in alphabetical order. Please note that it
is often possible to not make any specification and still achieve the desired results –
because the principle of heredity plays an important part in CSS. In some cases, it is
also possible that a specification is ineffective because it is not supported by the browser
or overwritten in another location.

align

This means the alignment of the text. Browsers such as the Internet Explorer also align
texts with text-align:

left Align left

center Align center

right Align right

justify Justification - should be used with care and does not work for the alignment
of elements.

Further information: http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap16.

html#heading-16.2%A0

114

http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap16.html#heading-16.2%A0
http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap16.html#heading-16.2%A0

16.6. Value margins

balign

For the alignment of background images, combine the specifications for the vertical
alignment (top-bottom) with those of the horizontal alignment:

top Align top

bottom Align bottom

center Align center – can be used for horizontal as well as for vertical alignment.

left Align left

right Align right

Always specify the value for the vertical alignment first and the horizontal one afterwards,
e.g. top left to align an image at the top left.

Further information: http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap14.

html#heading-14.2.1%A0

bcolor

The background color can be controlled with the color specifications described in color.
Additionally, the keyword transparent is available to make the background translu-
cent.

bfix

To fix a background image, enter the value fixed. Please note that a fixed background
can slow down the operation of the page (.e.g when scrolling).

boolean

Enter a 1 for true and a 0 for false.

115

http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap14.html#heading-14.2.1%A0
http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap14.html#heading-14.2.1%A0

16. Style variables

brepeat

Background images can also be repeated (tiled). This can be controlled through the
values below:

repeat Image is repeated in all directions.

repeat-x Image is repeated in all x-direction (left-right).

repeat-y Image is repeated in all y-direction (up-down).

no-repeat Image is displayed once, but not repeated.

burl

The URL of background images is specified through the key word url() . The brackets
contain the path to the image file.

Further information: http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap04.

html#heading-4.3.4%A0

color

Colors can be specified as hexadecimal numbers or in RGB-notation. Addtionally, a list
with key words such as red, green or blue is available. The color red can thus be specified
like this:

#f00

#ff0000

rgb(255,0,0)

rgb(100%, 0%, 0%)

red

Further information: http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap04.

html#heading-4.3.6%A0

custom

All variables that need their own, very particular specification, have been declared as
custom. Here, you find a fitting description with the respective style variable.

116

http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap04.html#heading-4.3.4%A0
http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap04.html#heading-4.3.4%A0
http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap04.html#heading-4.3.6%A0
http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap04.html#heading-4.3.6%A0

16.6. Value margins

favicon

When specifying your Favorites Icon, you can specify a name from the list below. These
are ready-made Favicons:

• black

• blue

• blueExtra

• brown

• brownExtra

• darkBlue

• darkGreen

• darkRed

• darkViolet

• green

• greenExtra

• grey

• greyExtra

• lightBlue

• lightGreen

• lightGrey

• ochre

• orange

• pink

• red

• redExtra

• violet

• violetExtra

• yellow

If you would like to use your own Favicon, leave this variable empty and overwrite the
file favicon.ico in the folder of the end application.

font

There are two ways for the specification of the font type:

1. Name of the font - this name should be put in quotation marks. Make sure only to
use fonts that a reinstalled on a majority of computers. Exotic font types might
work on your own computer, but not on the ones of your users.

2. Specification of a generic family: serif, sans-serif, cursive, fantasy and
monospace

Several font types need to be separated by commas. It is recommended to speficy a
generic font type last.

Further information: http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap15.

html#heading-15.2.2%A0

hide

Certain variables exist to hide elements. If the variable is empty, the element is displayed.
To hide it, please use the following code:

position: absolute; top: -9000px; left: -9000px;

117

http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap15.html#heading-15.2.2%A0
http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap15.html#heading-15.2.2%A0

16. Style variables

lengths

For the specification of heights, lengths and widths, the units em, ex, px and % are
available to you. The use of absolute sizes such as pt or cm is not recommended.

Further information: http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap04.

html#heading-4.3.2%A0

path

Path specifications to files and folders should be made relative to the WCF-folder.

style

Borders are changeable in their style. Please be aware that not all browsers supported
the styles below:

• none

• hidden

• dotted

• dashed

• solid

• double

• groove

• ridge

• inset

• outset

Further information: http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap08.

html#heading-8.5.3%A0

118

http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap04.html#heading-4.3.2%A0
http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap04.html#heading-4.3.2%A0
http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap08.html#heading-8.5.3%A0
http://edition-w3c.de/TR/1998/REC-CSS2-19980512/kap08.html#heading-8.5.3%A0

Index

@, 26
#, 26

include, 31

sandbox, 31
section, 32

Template
append, 28
assign, 27
Commentaries, 26
else, 30
elseif, 30
foreach, 31
Functions, 26
if, 30
include, 31

sandbox, 31
Modifiers, 27
section, 32
Variables, 25

@, 26
#, 26
assign, 25

119

	The WoltLab Community Framework
	Introduction
	About the WoltLab Community Framework
	Terminology
	License

	Installation
	System requirements
	Download
	Performing the installation

	The package system
	The fundamentals
	Included basic packages

	Quick start
	The class WCF
	Database access
	Template system
	Signed-in user
	Session
	Language system
	Cache
	Request

	The class DatabaseObject

	Database interface
	Methods of the Database class

	The template system
	Basic syntax for template designers
	Variables
	Commentaries
	Functions
	Modifiers

	The template system for programmers
	assign
	append
	assignByRef
	clearAssign
	clearAllAssign
	display
	fetch
	registerPrefilter

	Fixed integrated functions
	if,else,elseif - Case differentiation
	include
	foreach
	section
	capture

	Additional provided functions
	append
	assign
	counter
	cycle
	fetch
	htmloptions
	htmlcheckboxes
	implode
	lang
	pages

	Included modifiers
	concat
	date
	encodejs
	filesize
	fulldate
	shorttime
	time
	truncate

	Expanding the template system
	Custom modifiers
	Custom functions
	Custom block functions
	Custom prefilters
	Custom Compiler functions

	Language administration
	Fundamentals
	Use of language variables
	Construction of language files
	Embedding language files

	Events
	Triggering events
	Using events

	Sessions
	SessionFactory
	Session

	Caching
	RequestHandler & the page-, form- and action-classes
	RequestHandler
	Page and AbstractPage
	Form and AbstractForm
	Action and AbstractAction

	Create packages
	WCF-packages
	The format
	The package.xml file
	The package identifier
	Multilingual package names and package descriptions
	<requiredpackage>-Tag
	<optionalpackage>-Tag
	Instructions for installation and updates

	Different package types

	Package Installation Plugin
	File-based PIPs
	The Files-PIP
	The Templates-PIP
	ACPTemplates-PIP
	The Style-PIP
	The PIPs-PIP

	Import PIPs (XML)
	The EventListener-PIP
	The Cronjobs-PIP
	The Options-PIP
	The UserOptions-PIP
	The GroupOptions-PIP
	The FeedReaderSource-PIP
	The Help-PIP
	The BBCodes-PIP
	The Smilies-PIP
	The SearchableMessageType-PIP
	The PageLocation-PIP
	The HeaderMenu-PIP
	The UserCPMenu-PIP
	The ACPMenu-PIP
	The StyleAttributes-PIP
	The Languages-PIP

	Other PIPs
	The SQL-PIP
	The Script-PIP
	Das TemplatePatch-PIP
	The ACPTemplatePatch-PIP

	Custom PIPs
	The Interface
	Abstract classes
	Installation of the PIP

	Standalone applications
	Creating a package
	Inheritance of the classes WCF and WCFACP
	Creating an IndexPage-class
	Creating an index.php-file

	Appendices
	Events
	Events of the free WCF-packages

	Style variables
	Global
	General
	Page
	Boxes
	Borders
	Forms

	Text
	Text types
	Links

	Buttons
	Small Buttons
	Large Buttons

	Menus
	Main Menu
	Tabs
	Tab-Buttons
	Table heads
	Extras

	Advanced
	Message display
	Additional CSS-declarations
	Comments

	Value margins

